TOP

Research Article

Split Viewer

Mol. Cells 2007; 23(2): 138-144

Published online January 1, 1970

© The Korean Society for Molecular and Cellular Biology

Lactosylceramide α2,3-Sialyltransferase Is Induced Via a PKC/ERK/CREB-dependent Pathway in K562 Human Leukemia Cells

Hee-Jung Choi, Young-Guk Park, Cheorl-Ho Kim

Abstract

Previously we showed that the human GM3 synthase gene was expressed during the induction of megakaryocytic differentiation in human leukemia K562 cells by phorbol 12-myristate 13-acetate (PMA). In this study we found that treatment of PMA-induced K562 cells with G?6976, a specific inhibitor of PKC, and U0126, an inhibitor of the extracellular signal-regulated kinase (ERK) reduced expression of GM3 synthase, whereas wortmannin, an inhibitor of phosphoinositide 3-kinase (PI3K) did not. Moreover, activation of ERK and cAMP response element binding protein (CREB) was prevented by pretreatment with G?6976 and U0126. PMA stimulated the promoter activity of the 5?-flanking region from ?177 to ?83 region of the GM3 synthase gene, and mutation or deletion of a CREB site located around ?143 of the promoter reduced PMA-stimulated promoter activity, as did the inhibitors G?6976 and U0126. Our results demonstrate that induction of GM3 synthase during megakaryocytic differentiation in PMA-stimulated human leukemia K562 cells depends upon the PKC/ERK/CREB pathway.

Keywords CMP-NeuAc:Lactosylceramide α2,3-Sialyltransferase, (GM3 Synthase); Human Leukemia K562 Cells;, PKC/ERK/CREB Pathway

Article

Research Article

Mol. Cells 2007; 23(2): 138-144

Published online April 30, 2007

Copyright © The Korean Society for Molecular and Cellular Biology.

Lactosylceramide α2,3-Sialyltransferase Is Induced Via a PKC/ERK/CREB-dependent Pathway in K562 Human Leukemia Cells

Hee-Jung Choi, Young-Guk Park, Cheorl-Ho Kim

Abstract

Previously we showed that the human GM3 synthase gene was expressed during the induction of megakaryocytic differentiation in human leukemia K562 cells by phorbol 12-myristate 13-acetate (PMA). In this study we found that treatment of PMA-induced K562 cells with G?6976, a specific inhibitor of PKC, and U0126, an inhibitor of the extracellular signal-regulated kinase (ERK) reduced expression of GM3 synthase, whereas wortmannin, an inhibitor of phosphoinositide 3-kinase (PI3K) did not. Moreover, activation of ERK and cAMP response element binding protein (CREB) was prevented by pretreatment with G?6976 and U0126. PMA stimulated the promoter activity of the 5?-flanking region from ?177 to ?83 region of the GM3 synthase gene, and mutation or deletion of a CREB site located around ?143 of the promoter reduced PMA-stimulated promoter activity, as did the inhibitors G?6976 and U0126. Our results demonstrate that induction of GM3 synthase during megakaryocytic differentiation in PMA-stimulated human leukemia K562 cells depends upon the PKC/ERK/CREB pathway.

Keywords: CMP-NeuAc:Lactosylceramide α2,3-Sialyltransferase, (GM3 Synthase), Human Leukemia K562 Cells,, PKC/ERK/CREB Pathway

Mol. Cells
Feb 28, 2023 Vol.46 No.2, pp. 69~129
COVER PICTURE
The bulk tissue is a heterogeneous mixture of various cell types, which is depicted as a skein of intertwined threads with diverse colors each of which represents a unique cell type. Single-cell omics analysis untangles efficiently the skein according to the color by providing information of molecules at individual cells and interpretation of such information based on different cell types. The molecules that can be profiled at the individual cell by single-cell omics analysis includes DNA (bottom middle), RNA (bottom right), and protein (bottom left). This special issue reviews single-cell technologies and computational methods that have been developed for the single-cell omics analysis and how they have been applied to improve our understanding of the underlying mechanisms of biological and pathological phenomena at the single-cell level.

Share this article on

  • line
  • mail

Molecules and Cells

eISSN 0219-1032
qr-code Download