Mol. Cells 2022; 45(8): 513-521
Published online July 27, 2022
https://doi.org/10.14348/molcells.2022.2056
© The Korean Society for Molecular and Cellular Biology
Correspondence to : jeminchoi@hanyang.ac.kr
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/.
Cytotoxic T lymphocyte antigen-4 (CTLA-4) is an immune checkpoint molecule that is mainly expressed on activated T cells and regulatory T (Treg) cells that inhibits T-cell activation and regulates immune homeostasis. Due to the crucial functions of CTLA-4 in T-cell biology, CTLA-4-targeted immunotherapies have been developed for autoimmune disease as well as cancers. CTLA-4 is known to compete with CD28 to interact with B7, but some studies have revealed that its downstream signaling is independent of its ligand interaction. As a signaling domain of CTLA-4, the tyrosine motif plays a role in inhibiting T-cell activation. Recently, the lysine motif has been shown to be required for the function of Treg cells, emphasizing the importance of CTLA-4 signaling. In this review, we summarize the current understanding of CTLA-4 biology and molecular signaling events and discuss strategies to target CTLA-4 signaling for immune modulation and disease therapy.
Keywords cytotoxic T lymphocyte antigen-4 (CTLA-4), immunotherapy, signaling motif, T cell, Treg cell
Cytotoxic T lymphocyte antigen-4 (CTLA-4, CD152) is a 25 kDa molecule composed of a leader peptide, a ligand binding domain, a transmembrane domain, and a cytoplasmic domain. Three isoforms are generated through gene splicing in humans: full-length CTLA-4, soluble CTLA-4, and exon 1 and exon 4 forms (Ling et al., 1999; Valk et al., 2008). In mice, ligand-independent CTLA-4 is also present with three isoforms (Ueda et al., 2003). CTLA-4 negatively regulates T-cell activation and plays an important role in the suppressive function of regulatory T (Treg) cells (Krummel and Allison, 1995; Walunas et al., 1994; Wing et al., 2008). T cells are activated by T-cell receptor (TCR) signaling through antigen recognition and costimulatory signals such as CD28, which interacts with CD80 (B7.1) and CD86 (B7.2) expressed on antigen-presenting cells (APCs) (Linsley et al., 1990; 1991). CTLA-4 expressed on the plasma membrane of T cells has higher binding avidity to B7 molecules than CD28; thus, it competes with CD28 to regulate costimulation and induce anergy (Fig. 1A) (Linsley et al., 1994). In addition, CTLA-4 is constitutively expressed on Treg cells to sustain their suppressive functions and inhibits other T cells by interacting with B7 molecules (Read et al., 2000; Takahashi et al., 2000). As the functions of the extracellular domain of CTLA-4 have been elucidated, CTLA-4-immunoglobulin (CTLA-4-Ig) and anti-CTLA-4 antibodies that target CTLA-4 and B7 molecular interactions have been developed. However, while CTLA-4 has been intensively studied and is well understood as an important immunoregulatory molecule, CTLA-4 signaling has not received much attention. This review investigates the role of CTLA-4, its signaling mechanism, and therapeutic strategies targeting CTLA-4 signaling.
The
The importance of the immunomodulatory role of CTLA-4 has been highlighted by
As described above, CTLA-4 is constitutively expressed in Treg cells and plays an important role in the suppressive function of Treg cells (Read et al., 2000; Takahashi et al., 2000). Treatment with anti-CTLA-4 antibody (Ab) in severe combined immunodeficiency (SCID) mice transplanted with CD45RBhi cells and CD25+ Treg cells showed exacerbation of diseases that would be inhibited by Τreg cells, indicating that CTLA-4 is important for the suppressive function of Treg cells
CTLA-4 has been reported to affect T-cell differentiation as well as conventional T-cell activation and suppressive functions of Treg cells. Mass cytometry analysis of T cells from WT mice and
Although CTLA-4 is well known to be expressed in T cells, few reports have shown that it is expressed in tumor cell lines. Human tumor cell lines, such as carcinoma, melanoma, and sarcoma cell lines, express CTLA-4 (Contardi et al., 2005). Treatment with recombinant CD80 and CD86 ligands in osteosarcoma cell lines led to transduction of CTLA-4 downstream signaling, resulting in caspase activation and tumor cell apoptosis. In another study, anti-CTLA-4 Ab induced PD-L1 expression in small-cell lung cancer cell lines and increased tumor cell growth in an
To inhibit T-cell proliferation by blocking binding to B7 and interfering with B7 and CD28 interactions, CTLA-4-Ig (abatacept) was developed (Linsley et al., 1991). Abatacept was the first drug to receive U.S. Food and Drug Administration (FDA) approval among costimulatory targeting agents and was approved for rheumatoid arthritis treatment in 2005 (Genovese et al., 2005). CTLA-4-Ig was also approved by the FDA in 2017 for the treatment of active psoriatic arthritis (Mease et al., 2017) and in 2021 for the prevention of acute graft versus host disease in combination with calcineurin inhibitors and methotrexate (Watkins et al., 2021). In addition, because the binding affinity of abatacept was insufficient, belatacept, in which two amino acids of the CTLA-4 extracellular domain are mutated (leucin 104-glutamate, alanine 29-tyrosine), was developed. Belatacept was approved for use in transplantation in 2011, and the ability of belatacept to inhibit T-cell proliferation was found to be 10 times higher than that of abatacept (Larsen et al., 2005; Latek et al., 2009). However, CTLA-4-Ig has no effect in some autoimmune disorders, such as multiple sclerosis (Khoury et al., 2017), ulcerative colitis (Sandborn et al., 2012), and airway inflammation (Parulekar et al., 2013). In line with these findings, it seems that CTLA-4-Ig not only inhibits T-cell activation but also reduces the number of Treg cells (Glatigny et al., 2019; Szentpetery et al., 2017). To overcome this limitation, a phase II study in organ transplantation was conducted to study belatacept in combination with sirolimus, a drug that induces Treg-cell activation (NCT00565773). Other studies blocking CTLA-4 as a strategy to increase antitumor immunity have been conducted. The anti-CTLA-4 Ab ipilimumab was approved by the FDA in 2011 for treatment of patients with melanoma (Hodi et al., 2010). Anti-CTLA-4 increases CD28 signaling in T cells and prevents B7 trans-endocytosis mediated by Treg cells, allowing T cells to be activated (Qureshi et al., 2011; Seidel et al., 2018). In addition, exhausted T cells present in the tumor microenvironment highly express CTLA-4, and anti-CTLA-4 can induce antitumor immunity (Curran et al., 2010; Jiang et al., 2015). Similar to ipilimumab, tremelimumab is a human Ab against CTLA-4, but tremelimumab is an IgG2 isotype Ab, which minimizes antibody-dependent cellular cytotoxicity. Tremelimumab is being tested in an ongoing phase II study in pediatric cancer in combination with anti-PD-L1 therapy (NCT03837899, recruiting).
Although studies on the roles of the extracellular domain of CTLA-4 have been conducted, the downstream signals of CTLA-4 induced by the cytoplasmic domain remain relatively understudied. The CTLA-4 cytoplasmic domain consists of 36 amino acids and has four functional motifs: lysine, tyrosine 201, proline, and tyrosine 218 (Fig. 3). CTLA-4 agonistic Ab engagement in mouse CD4+ T cells inhibits nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), activator protein-1 (AP-1) (Olsson et al., 1999) and cluster formation of zeta chain associated protein kinase 70 (ZAP-70) (Schneider et al., 2008), which are downstream molecules of TCR signaling. In addition, CD28 and CTLA-4 interact with protein phosphatase 2A (PP2A) under different conditions, suggesting that they have distinct PP2A-mediated effects (Chuang et al., 2000). Moreover, CTLA-4 interferes with interactions with APCs by increasing T-cell motility (Schneider et al., 2006). Thus, CTLA-4 can modulate T-cell activation by regulating TCR signaling and T-cell motility.
Compared to other motifs in the CTLA-4 signaling domain, the tyrosine motifs have been studies most (Fig. 1C). Both tyrosine motifs in CTLA-4 are phosphorylated by SRC family tyrosine kinases, such as tyrosine-protein kinase Fyn (FYN), tyrosine-protein kinase Lyn (LYN) and lymphocyte specific protein tyrosine kinase (LCK), which recruits src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) to CTLA-4 in a FYN-dependent manner (Chuang et al., 1999; Miyatake et al., 1998). Tyrosine 201 of CTLA-4 and the src homology 2 (SH2) domains of SHP-2 interact to dephosphorylate SRC homology/collagen, which is a Ras activator (Marengere et al., 1996). These results indicate that recruitment of SHP-2 is induced by phosphorylation of tyrosines in the CTLA-4 signaling domain and that CTLA-4 regulates TCR signaling through SHP-2. Phosphoinositide 3 kinase (PI3K) interacts with the phosphorylated YNMN motif on CD28 and tyrosine 201 on CTLA-4, confirming that PI3K is a shared downstream molecule of CTLA-4 and CD28 signaling (Hu et al., 2001; Schneider et al., 1995). Moreover, tyrosine 201 of CTLA-4 is important for TCR regulation
The tyrosine motif of CTLA-4 is mainly involved in its recycling in T cells (Kozik et al., 2010). When tyrosine 201 is not phosphorylated, it interacts with the μ2 subunit of AP-2, and tyrosine 201 is phosphorylated by LCK and binds to PI3K (Bradshaw et al., 1997; Zhang and Allison, 1997). The AP-2 and CTLA-4 interaction results in internalization of CTLA-4 by clathrin-mediated endocytosis (Chuang et al., 1997; Shiratori et al., 1997). On the other hand, TRIM (T-cell receptor-interacting molecule), LAX (linker for activation of X cell), RAB8 and CTLA-4 form a complex in the trans-Golgi network (TGN) and traffic to the membrane (Banton et al., 2014), and exocytosis occurs in an ARF-1 (ADP-ribosylation factor 1)- and PLD (phospholipase D)-dependent manner (Mead et al., 2005). CTLA-4 interacts with AP-1 in the TGN, resulting in lysosomal degradation of CTLA-4 (Schneider and Rudd, 2014; Schneider et al., 1999). LPS-responsive beige-like anchor protein (LRBA) interacts with tyrosine 201 of CTLA-4 in the recycling endosome, preventing lysosomal degradation and increasing recycling (Lo et al., 2015).
Classically, the role of tyrosines in the CTLA-4 cytoplasmic domain has been emphasized, but the importance of a lysine-containing motif has recently been highlighted (Fig. 1D). PP2A interacts with the lysine and tyrosine 218 motifs of CTLA-4 in human T cells, and this binding does not affect T-cell inhibition but is required for the inverse agonist response of CTLA-4 (Teft et al., 2009). Additionally, the lysine motif of CTLA-4 is required for the suppressive function of Treg cells because it interacts with protein kinase C-η (PKC-η) (Kong et al., 2014). This interaction between CTLA-4 and PKC-η leads to trans-endocytosis of B7 expressed on APCs by recruiting the G protein-coupled receptor kinase-interacting protein 2 (GIT2)-PAK-interacting exchange factor (αPIX)-p21 activated kinase (PAK) complex. Similarly, when
Unlike the tyrosine and lysine motifs, other motifs have not been well studied. In 293T cells, JAK2 (Janus kinase 2) binds to the proline motif of CTLA-4 and phosphorylates tyrosine 218 of CTLA-4 (Chikuma et al., 2000). STAT5 also interacts with CTLA-4 independently of tyrosines 201 and 218. CTLA-4-transfected Jurkat cells exhibit reduced STAT5 transcriptional activity; thus, CTLA-4 negatively regulates STAT5, but the detailed mechanism has not been elucidated (Srahna et al., 2006).
The short cytoplasmic domain of CTLA-4 has multiple signaling motifs and physically interacts with various molecules, and some previous studies have revealed its importance in ligand-independent effects. Transfection of ligand-independent CTLA-4 (li-CTLA-4) into
The important immune checkpoint molecule CTLA-4 regulates the costimulation of T cells and is required for Treg-cell functions. Surprisingly, its signaling does not require ligand interactions, emphasizing that there are multiple mechanisms of CTLA-4 in T-cell biology. As CTLA-4 is often referred to as a “moving target” due to its recycling and transient localization in the membrane of activated T cells, the cytoplasmic domain of CTLA-4 might be more important for the intrinsic regulation of cellular signaling. In addition, due to constitutive expression of CTLA-4 in Treg cells, CTLA-4 signaling can sustain or control Treg-cell functions to cause them to function as “suppressor cells”. As a potential drug, unlike CTLA-4-Ig, strategies targeting the cytoplasmic domain function of CTLA-4 have the advantage of increasing the number of Treg cells
This research was supported by grants from the Bio and Medical Technology Development Program (NRF-2017M3A9C8027972) and Basic Science Research Program (NRF-2019R1A2C3006155) of the National Research Foundation funded by the Korean government to J.-M.C.
G.-R.K. and J.-M.C. conceived and wrote the manuscript.
The authors have no potential conflicts of interest to disclose.
Mol. Cells 2022; 45(8): 513-521
Published online August 31, 2022 https://doi.org/10.14348/molcells.2022.2056
Copyright © The Korean Society for Molecular and Cellular Biology.
Gil-Ran Kim1,2 and Je-Min Choi1,2,3,4,5, *
1Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Korea, 2Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea, 3Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Korea, 4Institute for Rheumatology Research, Hanyang University, Seoul 04763, Korea, 5Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Korea
Correspondence to:jeminchoi@hanyang.ac.kr
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/.
Cytotoxic T lymphocyte antigen-4 (CTLA-4) is an immune checkpoint molecule that is mainly expressed on activated T cells and regulatory T (Treg) cells that inhibits T-cell activation and regulates immune homeostasis. Due to the crucial functions of CTLA-4 in T-cell biology, CTLA-4-targeted immunotherapies have been developed for autoimmune disease as well as cancers. CTLA-4 is known to compete with CD28 to interact with B7, but some studies have revealed that its downstream signaling is independent of its ligand interaction. As a signaling domain of CTLA-4, the tyrosine motif plays a role in inhibiting T-cell activation. Recently, the lysine motif has been shown to be required for the function of Treg cells, emphasizing the importance of CTLA-4 signaling. In this review, we summarize the current understanding of CTLA-4 biology and molecular signaling events and discuss strategies to target CTLA-4 signaling for immune modulation and disease therapy.
Keywords: cytotoxic T lymphocyte antigen-4 (CTLA-4), immunotherapy, signaling motif, T cell, Treg cell
Cytotoxic T lymphocyte antigen-4 (CTLA-4, CD152) is a 25 kDa molecule composed of a leader peptide, a ligand binding domain, a transmembrane domain, and a cytoplasmic domain. Three isoforms are generated through gene splicing in humans: full-length CTLA-4, soluble CTLA-4, and exon 1 and exon 4 forms (Ling et al., 1999; Valk et al., 2008). In mice, ligand-independent CTLA-4 is also present with three isoforms (Ueda et al., 2003). CTLA-4 negatively regulates T-cell activation and plays an important role in the suppressive function of regulatory T (Treg) cells (Krummel and Allison, 1995; Walunas et al., 1994; Wing et al., 2008). T cells are activated by T-cell receptor (TCR) signaling through antigen recognition and costimulatory signals such as CD28, which interacts with CD80 (B7.1) and CD86 (B7.2) expressed on antigen-presenting cells (APCs) (Linsley et al., 1990; 1991). CTLA-4 expressed on the plasma membrane of T cells has higher binding avidity to B7 molecules than CD28; thus, it competes with CD28 to regulate costimulation and induce anergy (Fig. 1A) (Linsley et al., 1994). In addition, CTLA-4 is constitutively expressed on Treg cells to sustain their suppressive functions and inhibits other T cells by interacting with B7 molecules (Read et al., 2000; Takahashi et al., 2000). As the functions of the extracellular domain of CTLA-4 have been elucidated, CTLA-4-immunoglobulin (CTLA-4-Ig) and anti-CTLA-4 antibodies that target CTLA-4 and B7 molecular interactions have been developed. However, while CTLA-4 has been intensively studied and is well understood as an important immunoregulatory molecule, CTLA-4 signaling has not received much attention. This review investigates the role of CTLA-4, its signaling mechanism, and therapeutic strategies targeting CTLA-4 signaling.
The
The importance of the immunomodulatory role of CTLA-4 has been highlighted by
As described above, CTLA-4 is constitutively expressed in Treg cells and plays an important role in the suppressive function of Treg cells (Read et al., 2000; Takahashi et al., 2000). Treatment with anti-CTLA-4 antibody (Ab) in severe combined immunodeficiency (SCID) mice transplanted with CD45RBhi cells and CD25+ Treg cells showed exacerbation of diseases that would be inhibited by Τreg cells, indicating that CTLA-4 is important for the suppressive function of Treg cells
CTLA-4 has been reported to affect T-cell differentiation as well as conventional T-cell activation and suppressive functions of Treg cells. Mass cytometry analysis of T cells from WT mice and
Although CTLA-4 is well known to be expressed in T cells, few reports have shown that it is expressed in tumor cell lines. Human tumor cell lines, such as carcinoma, melanoma, and sarcoma cell lines, express CTLA-4 (Contardi et al., 2005). Treatment with recombinant CD80 and CD86 ligands in osteosarcoma cell lines led to transduction of CTLA-4 downstream signaling, resulting in caspase activation and tumor cell apoptosis. In another study, anti-CTLA-4 Ab induced PD-L1 expression in small-cell lung cancer cell lines and increased tumor cell growth in an
To inhibit T-cell proliferation by blocking binding to B7 and interfering with B7 and CD28 interactions, CTLA-4-Ig (abatacept) was developed (Linsley et al., 1991). Abatacept was the first drug to receive U.S. Food and Drug Administration (FDA) approval among costimulatory targeting agents and was approved for rheumatoid arthritis treatment in 2005 (Genovese et al., 2005). CTLA-4-Ig was also approved by the FDA in 2017 for the treatment of active psoriatic arthritis (Mease et al., 2017) and in 2021 for the prevention of acute graft versus host disease in combination with calcineurin inhibitors and methotrexate (Watkins et al., 2021). In addition, because the binding affinity of abatacept was insufficient, belatacept, in which two amino acids of the CTLA-4 extracellular domain are mutated (leucin 104-glutamate, alanine 29-tyrosine), was developed. Belatacept was approved for use in transplantation in 2011, and the ability of belatacept to inhibit T-cell proliferation was found to be 10 times higher than that of abatacept (Larsen et al., 2005; Latek et al., 2009). However, CTLA-4-Ig has no effect in some autoimmune disorders, such as multiple sclerosis (Khoury et al., 2017), ulcerative colitis (Sandborn et al., 2012), and airway inflammation (Parulekar et al., 2013). In line with these findings, it seems that CTLA-4-Ig not only inhibits T-cell activation but also reduces the number of Treg cells (Glatigny et al., 2019; Szentpetery et al., 2017). To overcome this limitation, a phase II study in organ transplantation was conducted to study belatacept in combination with sirolimus, a drug that induces Treg-cell activation (NCT00565773). Other studies blocking CTLA-4 as a strategy to increase antitumor immunity have been conducted. The anti-CTLA-4 Ab ipilimumab was approved by the FDA in 2011 for treatment of patients with melanoma (Hodi et al., 2010). Anti-CTLA-4 increases CD28 signaling in T cells and prevents B7 trans-endocytosis mediated by Treg cells, allowing T cells to be activated (Qureshi et al., 2011; Seidel et al., 2018). In addition, exhausted T cells present in the tumor microenvironment highly express CTLA-4, and anti-CTLA-4 can induce antitumor immunity (Curran et al., 2010; Jiang et al., 2015). Similar to ipilimumab, tremelimumab is a human Ab against CTLA-4, but tremelimumab is an IgG2 isotype Ab, which minimizes antibody-dependent cellular cytotoxicity. Tremelimumab is being tested in an ongoing phase II study in pediatric cancer in combination with anti-PD-L1 therapy (NCT03837899, recruiting).
Although studies on the roles of the extracellular domain of CTLA-4 have been conducted, the downstream signals of CTLA-4 induced by the cytoplasmic domain remain relatively understudied. The CTLA-4 cytoplasmic domain consists of 36 amino acids and has four functional motifs: lysine, tyrosine 201, proline, and tyrosine 218 (Fig. 3). CTLA-4 agonistic Ab engagement in mouse CD4+ T cells inhibits nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), activator protein-1 (AP-1) (Olsson et al., 1999) and cluster formation of zeta chain associated protein kinase 70 (ZAP-70) (Schneider et al., 2008), which are downstream molecules of TCR signaling. In addition, CD28 and CTLA-4 interact with protein phosphatase 2A (PP2A) under different conditions, suggesting that they have distinct PP2A-mediated effects (Chuang et al., 2000). Moreover, CTLA-4 interferes with interactions with APCs by increasing T-cell motility (Schneider et al., 2006). Thus, CTLA-4 can modulate T-cell activation by regulating TCR signaling and T-cell motility.
Compared to other motifs in the CTLA-4 signaling domain, the tyrosine motifs have been studies most (Fig. 1C). Both tyrosine motifs in CTLA-4 are phosphorylated by SRC family tyrosine kinases, such as tyrosine-protein kinase Fyn (FYN), tyrosine-protein kinase Lyn (LYN) and lymphocyte specific protein tyrosine kinase (LCK), which recruits src homology 2 domain-containing protein tyrosine phosphatase-2 (SHP-2) to CTLA-4 in a FYN-dependent manner (Chuang et al., 1999; Miyatake et al., 1998). Tyrosine 201 of CTLA-4 and the src homology 2 (SH2) domains of SHP-2 interact to dephosphorylate SRC homology/collagen, which is a Ras activator (Marengere et al., 1996). These results indicate that recruitment of SHP-2 is induced by phosphorylation of tyrosines in the CTLA-4 signaling domain and that CTLA-4 regulates TCR signaling through SHP-2. Phosphoinositide 3 kinase (PI3K) interacts with the phosphorylated YNMN motif on CD28 and tyrosine 201 on CTLA-4, confirming that PI3K is a shared downstream molecule of CTLA-4 and CD28 signaling (Hu et al., 2001; Schneider et al., 1995). Moreover, tyrosine 201 of CTLA-4 is important for TCR regulation
The tyrosine motif of CTLA-4 is mainly involved in its recycling in T cells (Kozik et al., 2010). When tyrosine 201 is not phosphorylated, it interacts with the μ2 subunit of AP-2, and tyrosine 201 is phosphorylated by LCK and binds to PI3K (Bradshaw et al., 1997; Zhang and Allison, 1997). The AP-2 and CTLA-4 interaction results in internalization of CTLA-4 by clathrin-mediated endocytosis (Chuang et al., 1997; Shiratori et al., 1997). On the other hand, TRIM (T-cell receptor-interacting molecule), LAX (linker for activation of X cell), RAB8 and CTLA-4 form a complex in the trans-Golgi network (TGN) and traffic to the membrane (Banton et al., 2014), and exocytosis occurs in an ARF-1 (ADP-ribosylation factor 1)- and PLD (phospholipase D)-dependent manner (Mead et al., 2005). CTLA-4 interacts with AP-1 in the TGN, resulting in lysosomal degradation of CTLA-4 (Schneider and Rudd, 2014; Schneider et al., 1999). LPS-responsive beige-like anchor protein (LRBA) interacts with tyrosine 201 of CTLA-4 in the recycling endosome, preventing lysosomal degradation and increasing recycling (Lo et al., 2015).
Classically, the role of tyrosines in the CTLA-4 cytoplasmic domain has been emphasized, but the importance of a lysine-containing motif has recently been highlighted (Fig. 1D). PP2A interacts with the lysine and tyrosine 218 motifs of CTLA-4 in human T cells, and this binding does not affect T-cell inhibition but is required for the inverse agonist response of CTLA-4 (Teft et al., 2009). Additionally, the lysine motif of CTLA-4 is required for the suppressive function of Treg cells because it interacts with protein kinase C-η (PKC-η) (Kong et al., 2014). This interaction between CTLA-4 and PKC-η leads to trans-endocytosis of B7 expressed on APCs by recruiting the G protein-coupled receptor kinase-interacting protein 2 (GIT2)-PAK-interacting exchange factor (αPIX)-p21 activated kinase (PAK) complex. Similarly, when
Unlike the tyrosine and lysine motifs, other motifs have not been well studied. In 293T cells, JAK2 (Janus kinase 2) binds to the proline motif of CTLA-4 and phosphorylates tyrosine 218 of CTLA-4 (Chikuma et al., 2000). STAT5 also interacts with CTLA-4 independently of tyrosines 201 and 218. CTLA-4-transfected Jurkat cells exhibit reduced STAT5 transcriptional activity; thus, CTLA-4 negatively regulates STAT5, but the detailed mechanism has not been elucidated (Srahna et al., 2006).
The short cytoplasmic domain of CTLA-4 has multiple signaling motifs and physically interacts with various molecules, and some previous studies have revealed its importance in ligand-independent effects. Transfection of ligand-independent CTLA-4 (li-CTLA-4) into
The important immune checkpoint molecule CTLA-4 regulates the costimulation of T cells and is required for Treg-cell functions. Surprisingly, its signaling does not require ligand interactions, emphasizing that there are multiple mechanisms of CTLA-4 in T-cell biology. As CTLA-4 is often referred to as a “moving target” due to its recycling and transient localization in the membrane of activated T cells, the cytoplasmic domain of CTLA-4 might be more important for the intrinsic regulation of cellular signaling. In addition, due to constitutive expression of CTLA-4 in Treg cells, CTLA-4 signaling can sustain or control Treg-cell functions to cause them to function as “suppressor cells”. As a potential drug, unlike CTLA-4-Ig, strategies targeting the cytoplasmic domain function of CTLA-4 have the advantage of increasing the number of Treg cells
This research was supported by grants from the Bio and Medical Technology Development Program (NRF-2017M3A9C8027972) and Basic Science Research Program (NRF-2019R1A2C3006155) of the National Research Foundation funded by the Korean government to J.-M.C.
G.-R.K. and J.-M.C. conceived and wrote the manuscript.
The authors have no potential conflicts of interest to disclose.
Sehan Jeong, Sharmin Afroz, Donghyun Kang, Jeonghwan Noh, Jooyeon Suh, June Hyuk Kim, Hye Jin You, Hyun Guy Kang, Yi-Jun Kim, and Jin-Hong Kim
Mol. Cells 2023; 46(10): 579-588 https://doi.org/10.14348/molcells.2023.0079Min-Ji Kim, Hoyul Lee, Dipanjan Chanda, Themis Thoudam, Hyeon-Ji Kang, Robert A. Harris, and In-Kyu Lee
Mol. Cells 2023; 46(5): 259-267 https://doi.org/10.14348/molcells.2023.2128Min Kyung Jung and Eui-Cheol Shin
Mol. Cells 2021; 44(6): 401-407 https://doi.org/10.14348/molcells.2021.0079