Mol. Cells 2013; 36(6): 548-555
Published online November 14, 2013
https://doi.org/10.1007/s10059-013-0233-4
© The Korean Society for Molecular and Cellular Biology
Epidermal growth factor (EGF) is a well-known growth factor that induces cancer cell migration and invasion. Previous studies have shown that SMAD ubiquitination regulatory factor 1 (SMURF1), an E3 ubiquitin ligase, regulates cell motility by inducing RhoA degradation. Therefore, we examined the role of SMURF1 in EGF-induced cell migration and invasion using MDA-MB-231 cells, a human breast cancer cell line. EGF increased SMURF1 expression at both the mRNA and protein levels. All ErbB family members were expressed in MDA-MB-231 cells and receptor tyrosine kinase inhibitors specific for the EGF receptor (EGFR) or ErbB2 blocked the EGF-mediated induction of
SMURF1 expression. Within the signaling pathways examined, ERK1/2 and protein kinase C activity were required for EGF-induced SMURF1 expression. The overexpression of constitutively active MEK1 increased the SMURF1 to levels similar to those induced by EGF. SMURF1 induction by EGF treatment or by the overexpression of MEK1 or SMURF1 resulted in enhanced cell migration and invasion, whereas SMURF1 knockdown suppressed EGF- or MEK1-induced cell migration and invasion. EGF treatment or SMURF1 overexpression decreased the endogenous RhoA protein levels. The overexpression of constitutively active RhoA prevented EGF- or SMURF1-induced cell migration and invasion. These results suggest that EGFinduced SMURF1 plays a role in breast cancer cell migration and invasion through the downregulation of RhoA.
Keywords breast cancer, EGF, invasion, migration, SMURF1
Mol. Cells 2013; 36(6): 548-555
Published online December 31, 2013 https://doi.org/10.1007/s10059-013-0233-4
Copyright © The Korean Society for Molecular and Cellular Biology.
Arang Kwon, Hye-Lim Lee, Kyung Mi Woo, Hyun-Mo Ryoo, and Jeong-Hwa Baek
Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 110-749, Korea
Epidermal growth factor (EGF) is a well-known growth factor that induces cancer cell migration and invasion. Previous studies have shown that SMAD ubiquitination regulatory factor 1 (SMURF1), an E3 ubiquitin ligase, regulates cell motility by inducing RhoA degradation. Therefore, we examined the role of SMURF1 in EGF-induced cell migration and invasion using MDA-MB-231 cells, a human breast cancer cell line. EGF increased SMURF1 expression at both the mRNA and protein levels. All ErbB family members were expressed in MDA-MB-231 cells and receptor tyrosine kinase inhibitors specific for the EGF receptor (EGFR) or ErbB2 blocked the EGF-mediated induction of
SMURF1 expression. Within the signaling pathways examined, ERK1/2 and protein kinase C activity were required for EGF-induced SMURF1 expression. The overexpression of constitutively active MEK1 increased the SMURF1 to levels similar to those induced by EGF. SMURF1 induction by EGF treatment or by the overexpression of MEK1 or SMURF1 resulted in enhanced cell migration and invasion, whereas SMURF1 knockdown suppressed EGF- or MEK1-induced cell migration and invasion. EGF treatment or SMURF1 overexpression decreased the endogenous RhoA protein levels. The overexpression of constitutively active RhoA prevented EGF- or SMURF1-induced cell migration and invasion. These results suggest that EGFinduced SMURF1 plays a role in breast cancer cell migration and invasion through the downregulation of RhoA.
Keywords: breast cancer, EGF, invasion, migration, SMURF1
Myung-Jin Kim, Hak-Su Kim, Soo-Hwan Lee, Young Yang, Myeong-Sok Lee, and Jong-Seok Lim
Mol. Cells 2014; 37(10): 759-765 https://doi.org/10.14348/molcells.2014.0232Haejung Kim, Haein Hwang, Hansoo Lee, and Hyo Jeong Hong
Mol. Cells 2017; 40(5): 363-370 https://doi.org/10.14348/molcells.2017.2282Samthosh V Alahari, Shengli Dong, and Suresh K Alahari
Mol. Cells 2015; 38(2): 95-104 https://doi.org/10.14348/molcells.2015.2298