Top

Research Article

Split Viewer

Mol. Cells 2012; 34(3): 279-287

Published online September 30, 2012

https://doi.org/10.1007/s10059-012-0103-5

© The Korean Society for Molecular and Cellular Biology

Rhythmic Oscillation of Histone Acetylation and Methylation at the Arabidopsis Central Clock Loci

Hae-Ryong Song1,2, and Yoo-Sun Noh1,3,*

1School of Biological Sciences, Seoul National University, Seoul 151-747, Korea, 2Biosafety Research Team, Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708, Korea, 3Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742, Korea.

Correspondence to : *Correspondence: ysnoh@snu.ac.kr

Received: April 9, 2012; Revised: July 12, 2012; Accepted: July 16, 2012

Abstract

Circadian clock genes are regulated by a transcriptional-translational feedback loop. In Arabidopsis, LATE ELON-GATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSO- CIATED 1 (CCA1) transcripts are highly expressed in the morning. Translated LHY and CCA1 proteins repress the expression of TIMING OF CAB EXPRESSION 1 (TOC1), which peaks in the evening. TOC1 protein induces expression of LHY and CCA1, forming a negative feedback loop which is believed to constitute the oscillatory mechanism of the clock. The rhythmic oscillation of mouse clock genes mPERIOD 1 (mPER1) and mPER2 has been correlated with regular alteration of chromatin structure through histone acetylation/deacetylation. However, little is known about the relationship between the transcriptional activity of Arabidopsis clock genes and their chromatin status. Here, we report that histone H3 acetylation (H3Ac) and H3 lysine 4 tri-methylation (H3K4me3) levels at LHY, CCA1, and TOC1 are positively correlated with the rhythmic transcript levels of these genes, whereas H3K36me2 level shows a negative correlation. Thus, our study suggests rhythmic transcription of Arabidopsis clock genes might be regulated by rhythmic histone modification, and it provides a platform for future identification of clock-control-ling histone modifiers.

Keywords Arabidopsis, chromatin, circadian clock, circadian rhythm, histone modification

Article

Research Article

Mol. Cells 2012; 34(3): 279-287

Published online September 30, 2012 https://doi.org/10.1007/s10059-012-0103-5

Copyright © The Korean Society for Molecular and Cellular Biology.

Rhythmic Oscillation of Histone Acetylation and Methylation at the Arabidopsis Central Clock Loci

Hae-Ryong Song1,2, and Yoo-Sun Noh1,3,*

1School of Biological Sciences, Seoul National University, Seoul 151-747, Korea, 2Biosafety Research Team, Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708, Korea, 3Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742, Korea.

Correspondence to:*Correspondence: ysnoh@snu.ac.kr

Received: April 9, 2012; Revised: July 12, 2012; Accepted: July 16, 2012

Abstract

Circadian clock genes are regulated by a transcriptional-translational feedback loop. In Arabidopsis, LATE ELON-GATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSO- CIATED 1 (CCA1) transcripts are highly expressed in the morning. Translated LHY and CCA1 proteins repress the expression of TIMING OF CAB EXPRESSION 1 (TOC1), which peaks in the evening. TOC1 protein induces expression of LHY and CCA1, forming a negative feedback loop which is believed to constitute the oscillatory mechanism of the clock. The rhythmic oscillation of mouse clock genes mPERIOD 1 (mPER1) and mPER2 has been correlated with regular alteration of chromatin structure through histone acetylation/deacetylation. However, little is known about the relationship between the transcriptional activity of Arabidopsis clock genes and their chromatin status. Here, we report that histone H3 acetylation (H3Ac) and H3 lysine 4 tri-methylation (H3K4me3) levels at LHY, CCA1, and TOC1 are positively correlated with the rhythmic transcript levels of these genes, whereas H3K36me2 level shows a negative correlation. Thus, our study suggests rhythmic transcription of Arabidopsis clock genes might be regulated by rhythmic histone modification, and it provides a platform for future identification of clock-control-ling histone modifiers.

Keywords: Arabidopsis, chromatin, circadian clock, circadian rhythm, histone modification

Mol. Cells
Dec 31, 2021 Vol.44 No.12, pp. 861~919
COVER PICTURE
Structure of the fly peripheral neurons in the fly head. Flies have basic sensory organs including eyes for vision, antennae and maxillary palps for olfaction, and proboscis (magenta) for gustation which can be labelled with monoclonal antibody 22C10. The figure is a 3D reconstructed image with 30 slices of confocal sections with 3 μm interval. It shows that the proboscis is required for sensing attractive carboxylic acids such as glycolic acid, citric acid, and lactic acid (Shrestha and Lee, pp. 900-910).

Share this article on

  • line
  • mail

Related articles in Mol. Cells

Molecules and Cells

eISSN 0219-1032
qr-code Download