TOP

Research Article

Split Viewer

Mol. Cells 2012; 33(3): 285-293

Published online February 28, 2012

https://doi.org/10.1007/s10059-012-2253-x

© The Korean Society for Molecular and Cellular Biology

Rice ASR1 Protein with Reactive Oxygen Species Scavenging and Chaperone-like Activities Enhances Acquired Tolerance to Abiotic Stresses in Saccharomyces cerevisiae

Il-Sup Kim, Young-Saeng Kim, and Ho-Sung Yoon*

Department of Biology, Kyungpook National University, Daegu 702-701, Korea

Correspondence to : *Correspondence: hyoon@knu.ac.kr

Received: November 9, 2011; Revised: December 9, 2011; Accepted: December 12, 2011

Abstract

Abscisic acid stress ripening (ASR1) protein is a small hydrophilic, low molecular weight, and stress-specific plant protein. The gene coding region of ASR1 protein, which is induced under high salinity in rice (Oryza sativa Ilmi), was cloned into a yeast expression vector pVTU260 and transformed into yeast cells. Heterologous expression of ASR1 protein in transgenic yeast cells improved tolerance to abiotic stresses including hydrogen peroxide (H2O2), high salinity (NaCl), heat shock, menadione, copper sulfate, sulfuric acid, lactic acid, salicylic acid, and also high concentration of ethanol. In particular, the expression of metabolic enzymes (Fba1p, Pgk1p, Eno2p, Tpi1p, and Adh1p), antioxidant enzyme (Ahp1p), molecular chaperone (Ssb1p), and pyrimidine biosynthesis-related enzyme (Ura1p) was up-regulated in the transgenic yeast cells under oxidative stress when compared with wild-type cells. All of these enzymes contribute to an alleviated redox state to H2O2-induced oxidative stress. In the in vitro assay, the purified ASR1 protein was able to scavenge ROS by converting H2O2 to H2O. Taken together, these results suggest that the ASR1 protein could function as an effective ROS scavenger and its expression could enhance acquired tolerance of ROS-induced oxidative stress through induction of various cell rescue proteins in yeast cells.

Keywords abiotic stress, ASR1 gene, redox homeostasis, stress tolerance, yeast

Article

Research Article

Mol. Cells 2012; 33(3): 285-293

Published online March 31, 2012 https://doi.org/10.1007/s10059-012-2253-x

Copyright © The Korean Society for Molecular and Cellular Biology.

Rice ASR1 Protein with Reactive Oxygen Species Scavenging and Chaperone-like Activities Enhances Acquired Tolerance to Abiotic Stresses in Saccharomyces cerevisiae

Il-Sup Kim, Young-Saeng Kim, and Ho-Sung Yoon*

Department of Biology, Kyungpook National University, Daegu 702-701, Korea

Correspondence to:*Correspondence: hyoon@knu.ac.kr

Received: November 9, 2011; Revised: December 9, 2011; Accepted: December 12, 2011

Abstract

Abscisic acid stress ripening (ASR1) protein is a small hydrophilic, low molecular weight, and stress-specific plant protein. The gene coding region of ASR1 protein, which is induced under high salinity in rice (Oryza sativa Ilmi), was cloned into a yeast expression vector pVTU260 and transformed into yeast cells. Heterologous expression of ASR1 protein in transgenic yeast cells improved tolerance to abiotic stresses including hydrogen peroxide (H2O2), high salinity (NaCl), heat shock, menadione, copper sulfate, sulfuric acid, lactic acid, salicylic acid, and also high concentration of ethanol. In particular, the expression of metabolic enzymes (Fba1p, Pgk1p, Eno2p, Tpi1p, and Adh1p), antioxidant enzyme (Ahp1p), molecular chaperone (Ssb1p), and pyrimidine biosynthesis-related enzyme (Ura1p) was up-regulated in the transgenic yeast cells under oxidative stress when compared with wild-type cells. All of these enzymes contribute to an alleviated redox state to H2O2-induced oxidative stress. In the in vitro assay, the purified ASR1 protein was able to scavenge ROS by converting H2O2 to H2O. Taken together, these results suggest that the ASR1 protein could function as an effective ROS scavenger and its expression could enhance acquired tolerance of ROS-induced oxidative stress through induction of various cell rescue proteins in yeast cells.

Keywords: abiotic stress, ASR1 gene, redox homeostasis, stress tolerance, yeast

Mol. Cells
Nov 30, 2023 Vol.46 No.11, pp. 655~725
COVER PICTURE
Kim et al. (pp. 710-724) demonstrated that a pathogen-derived Ralstonia pseudosolanacearum type III effector RipL delays flowering time and enhances susceptibility to bacterial infection in Arabidopsis thaliana. Shown is the RipL-expressing Arabidopsis plant, which displays general dampening of the transcriptional program during pathogen infection, grown in long-day conditions.

Supplementary File

Share this article on

  • line

Related articles in Mol. Cells

Molecules and Cells

eISSN 0219-1032
qr-code Download