TOP

Research Article

Split Viewer

Mol. Cells 2009; 28(3): 189-194

Published online August 20, 2009

https://doi.org/10.1007/s10059-009-0118-8

© The Korean Society for Molecular and Cellular Biology

Insulin-Like Growth Factor-I Induces Androgen
Receptor Activation in Differentiating C2C12
Skeletal Muscle Cells

Hye Jin Kim, and Won Jun Lee

Received: July 2, 2009; Revised: July 15, 2009; Accepted: July 16, 2009

Abstract

The modulating effect of IGF-I on the regulation of AR gene expression and activation in skeletal muscle cells remains poorly understood. In this study, the effects of IGF-I treatment on AR induction and activation in the absence of AR ligands were examined. Differentiating C2C12 cells were treated with different concentrations (0-250 ng/ml) of IGF-I or for various periods of time (0-60 min) of 250 ng/ml IGF-I. Treatment of C2C12 cells with IGF-I resulted in a dose- and time-dependent increase in total AR and phosphorylated AR (Ser 213). IGF-I treatment also led to significantly increased AR mRNA expression when compared with the control. The levels of skeletal α-actin and myogenin mRNA, known target genes of AR, were also significantly upregulated after 5 or 10 min of treatment with IGF-I. Confocal images revealed that IGF-I stimulated nuclear localization of AR in the absence of ligands. In addition, an electrophoretic mobility shift assay indicated that IGF-I stimulated the AR DNA binding activity in a time-dependent manner. The present results suggest that IGF-I stimulates the expression and activation of AR by ligand-independent mechanism in differentiating C2C12 mouse skeletal muscle cells.

Keywords androgen receptor, insulin-like growth factor-I, ligand-independent mechanism, skeletal muscle, steroid receptors

Article

Research Article

Mol. Cells 2009; 28(3): 189-194

Published online September 30, 2009 https://doi.org/10.1007/s10059-009-0118-8

Copyright © The Korean Society for Molecular and Cellular Biology.

Insulin-Like Growth Factor-I Induces Androgen
Receptor Activation in Differentiating C2C12
Skeletal Muscle Cells

Hye Jin Kim, and Won Jun Lee

Received: July 2, 2009; Revised: July 15, 2009; Accepted: July 16, 2009

Abstract

The modulating effect of IGF-I on the regulation of AR gene expression and activation in skeletal muscle cells remains poorly understood. In this study, the effects of IGF-I treatment on AR induction and activation in the absence of AR ligands were examined. Differentiating C2C12 cells were treated with different concentrations (0-250 ng/ml) of IGF-I or for various periods of time (0-60 min) of 250 ng/ml IGF-I. Treatment of C2C12 cells with IGF-I resulted in a dose- and time-dependent increase in total AR and phosphorylated AR (Ser 213). IGF-I treatment also led to significantly increased AR mRNA expression when compared with the control. The levels of skeletal α-actin and myogenin mRNA, known target genes of AR, were also significantly upregulated after 5 or 10 min of treatment with IGF-I. Confocal images revealed that IGF-I stimulated nuclear localization of AR in the absence of ligands. In addition, an electrophoretic mobility shift assay indicated that IGF-I stimulated the AR DNA binding activity in a time-dependent manner. The present results suggest that IGF-I stimulates the expression and activation of AR by ligand-independent mechanism in differentiating C2C12 mouse skeletal muscle cells.

Keywords: androgen receptor, insulin-like growth factor-I, ligand-independent mechanism, skeletal muscle, steroid receptors

Mol. Cells
Sep 30, 2023 Vol.46 No.9, pp. 527~572
COVER PICTURE
Chronic obstructive pulmonary disease (COPD) is marked by airspace enlargement (emphysema) and small airway fibrosis, leading to airflow obstruction and eventual respiratory failure. Shown is a microphotograph of hematoxylin and eosin (H&E)-stained histological sections of the enlarged alveoli as an indicator of emphysema. Piao et al. (pp. 558-572) demonstrate that recombinant human hyaluronan and proteoglycan link protein 1 (rhHAPLN1) significantly reduces the extended airspaces of the emphysematous alveoli by increasing the levels of TGF-β receptor I and SIRT1/6, as a previously unrecognized mechanism in human alveolar epithelial cells, and consequently mitigates COPD.

Share this article on

  • line

Molecules and Cells

eISSN 0219-1032
qr-code Download