TOP

Research Article

Split Viewer

Mol. Cells 2008; 26(6): 576-582

Published online January 1, 1970

© The Korean Society for Molecular and Cellular Biology

Dpp Represses eagle Expression at Short-Range, but Can Repress Its Expression at a Long-Range via EGFR Signal Repression

Se Young Kim, Keuk Il Jung, Sang Hee Kim and Sang-Hak Jeon

Abstract

Nervous system development takes place after positional information has been established along the dorsal-ventral (D/V) axis. The initial subdivision provided by a gradient of nuclear dorsal protein is maintained by the zygotic genes expressed along the D/V axis. In this study, an investigation was conducted to determine the range of Dpp function in repressing the expression of eagle (eg) that is present in intermediate neuroblasts defective (ind) and muscle specific homeobox (msh) gene domain. eg is expressed in neuroblast (NB) 2-4, 3-3 and 6-4 of the msh domain, and NB7-3 of the ind domain at the embryonic stage 11. In decapentaplegic (dpp) loss-of-function mutant embryos, eg was ectopically expressed in the dorsal region, while in dpp gain-of-function mutants produced by sog or sca-GAL4/UAS-dpp, eg was repressed by Dpp. It is worthy of note that Dpp produced from sim;;dpp embryos showed that Dpp could function at long range. However, Dpp produced from en-GAL4/UAS-dpp or wg-GAL4/UAS-dpp primarily acted at short-range. This result demonstrated that this discrepancy seems to be due to the repression of Dpp to EGFR signaling in sim;;dpp embryos. Taken together, these results suggest that Dpp signaling works at short-range, but can function indirectly at long-range by way of repression of EGFR signaling during embryonic neurogenesis.

Keywords Dpp signaling, Drosophila melanogaster, EGFR signaling, eagle, neuroectoderm

Article

Research Article

Mol. Cells 2008; 26(6): 576-582

Published online December 31, 2008

Copyright © The Korean Society for Molecular and Cellular Biology.

Dpp Represses eagle Expression at Short-Range, but Can Repress Its Expression at a Long-Range via EGFR Signal Repression

Se Young Kim, Keuk Il Jung, Sang Hee Kim and Sang-Hak Jeon

Abstract

Nervous system development takes place after positional information has been established along the dorsal-ventral (D/V) axis. The initial subdivision provided by a gradient of nuclear dorsal protein is maintained by the zygotic genes expressed along the D/V axis. In this study, an investigation was conducted to determine the range of Dpp function in repressing the expression of eagle (eg) that is present in intermediate neuroblasts defective (ind) and muscle specific homeobox (msh) gene domain. eg is expressed in neuroblast (NB) 2-4, 3-3 and 6-4 of the msh domain, and NB7-3 of the ind domain at the embryonic stage 11. In decapentaplegic (dpp) loss-of-function mutant embryos, eg was ectopically expressed in the dorsal region, while in dpp gain-of-function mutants produced by sog or sca-GAL4/UAS-dpp, eg was repressed by Dpp. It is worthy of note that Dpp produced from sim;;dpp embryos showed that Dpp could function at long range. However, Dpp produced from en-GAL4/UAS-dpp or wg-GAL4/UAS-dpp primarily acted at short-range. This result demonstrated that this discrepancy seems to be due to the repression of Dpp to EGFR signaling in sim;;dpp embryos. Taken together, these results suggest that Dpp signaling works at short-range, but can function indirectly at long-range by way of repression of EGFR signaling during embryonic neurogenesis.

Keywords: Dpp signaling, Drosophila melanogaster, EGFR signaling, eagle, neuroectoderm

Mol. Cells
Jun 30, 2023 Vol.46 No.6, pp. 329~398
COVER PICTURE
The cellular proteostasis network is adaptively modulated upon cellular stress, thereby protecting cells from proteostasis collapse. Heat shock induces the translocation of misfolded proteins and the chaperone protein HSP70 into nucleolus, where nuclear protein quality control primarily occurs. Nuclear RNA export factor 1 (green), nucleolar protein fibrillarin (red), and nuclei (blue) were visualized in NIH3T3 cells under basal (left) and heat shock (right) conditions (Park et al., pp. 374-386).

Share this article on

  • line
  • mail

Related articles in Mol. Cells

Molecules and Cells

eISSN 0219-1032
qr-code Download