TOP

Research Article

Split Viewer

Mol. Cells 2007; 23(1): 80-87

Published online January 1, 1970

© The Korean Society for Molecular and Cellular Biology

Transcriptional Activator Elements for Curtovirus C1 Expression Reside in the 3' Coding Region of ORF C1

Jingyung Hur, Kenneth Buckley, Sukchan Lee, Keith Davis

Abstract

Beet curly top virus (BCTV) and Beet severe curly top virus (BSCTV), members of curtoviruses, encode seven open reading frames (ORFs) within a ~3 kb genome. One of these viral ORFs, C1, is known to play an important role in the early stage of viral infection in plants during initiation of viral DNA replication. We used promoter:: reporter (?-glucuronidase) gene fusions in transgenic Ara-bidopsis to identify the putative promoter region of BCTV ORF C1. Unlike other geminiviruses, the intergenic region of BCTV was not sufficient to promote C1 expression in transgenic plants. When sequences extending into the coding region of C1 were tested, strong expression of the reporter protein was observed in vascular tissues of transgenic plants. This expression was not dependent on the presence of the intergenic regions or proximal 5¡? portions of the C1 coding region. Transgenic plants expressing a reporter gene under control of the putative complete C1 promoter were inoculated with virus to determine if any viral transcript affected C1 expression. Virus inoculated plants did not show any altered pattern or change in of reporter gene expression level. These results suggest that (1) important transcriptional activator elements for C1 expression reside in the 3? portion of C1 coding area itself, (2) C1 protein does not auto-regulate its own expression and (3) C1 expression of two curtoviruses is controlled differently compared to other geminiviruses.

Keywords Arabidopsis; Curtovirus; Geminivirus; ORF C1; Promoter.

Article

Research Article

Mol. Cells 2007; 23(1): 80-87

Published online February 28, 2007

Copyright © The Korean Society for Molecular and Cellular Biology.

Transcriptional Activator Elements for Curtovirus C1 Expression Reside in the 3' Coding Region of ORF C1

Jingyung Hur, Kenneth Buckley, Sukchan Lee, Keith Davis

Abstract

Beet curly top virus (BCTV) and Beet severe curly top virus (BSCTV), members of curtoviruses, encode seven open reading frames (ORFs) within a ~3 kb genome. One of these viral ORFs, C1, is known to play an important role in the early stage of viral infection in plants during initiation of viral DNA replication. We used promoter:: reporter (?-glucuronidase) gene fusions in transgenic Ara-bidopsis to identify the putative promoter region of BCTV ORF C1. Unlike other geminiviruses, the intergenic region of BCTV was not sufficient to promote C1 expression in transgenic plants. When sequences extending into the coding region of C1 were tested, strong expression of the reporter protein was observed in vascular tissues of transgenic plants. This expression was not dependent on the presence of the intergenic regions or proximal 5¡? portions of the C1 coding region. Transgenic plants expressing a reporter gene under control of the putative complete C1 promoter were inoculated with virus to determine if any viral transcript affected C1 expression. Virus inoculated plants did not show any altered pattern or change in of reporter gene expression level. These results suggest that (1) important transcriptional activator elements for C1 expression reside in the 3? portion of C1 coding area itself, (2) C1 protein does not auto-regulate its own expression and (3) C1 expression of two curtoviruses is controlled differently compared to other geminiviruses.

Keywords: Arabidopsis, Curtovirus, Geminivirus, ORF C1, Promoter.

Mol. Cells
May 31, 2023 Vol.46 No.5, pp. 259~328
COVER PICTURE
The alpha-helices in the lamin filaments are depicted as coils, with different subdomains distinguished by various colors. Coil 1a is represented by magenta, coil 1b by yellow, L2 by green, coil 2a by white, coil 2b by brown, stutter by cyan, coil 2c by dark blue, and the lamin Ig-like domain by grey. In the background, cells are displayed, with the cytosol depicted in green and the nucleus in blue (Ahn et al., pp. 309-318).

Share this article on

  • line
  • mail

Molecules and Cells

eISSN 0219-1032
qr-code Download