Mol. Cells 2006; 22(1): 8-12
Published online January 1, 1970
© The Korean Society for Molecular and Cellular Biology
Neuron-derived orphan receptor (NOR-1) is a member of the thyroid/steroid receptor superfamily that was originally identified in forebrain neuronal cells undergoing apoptosis. In addition to apoptotic stimuli, activation of several signal transduction pathways including direct neuronal depolarization regulates the expression of NOR-1. In this study we tested whether the expression of NOR-1 is changed following transient ischemic injury in the adult rat brain. NOR-1 mRNA increased rapidly in the dentate gyrus of the hippocampal formation and piriform cortex 3 h after transient global ischemia and returned to basal level at 6 h. On the other hand, oxygen-glucose deprivation of cultured cerebral cortical neurons did not alter the expression of NOR-1. These results suggest that expression of NOR-1 is differentially regulated in different brain regions in response to globally applied brain ischemia, but that hypoxia is not sufficient to induce its expression.
Keywords Depolarization; Hypoxia; NOR-1; OGD; Transient Global Ischemia.
Mol. Cells 2006; 22(1): 8-12
Published online August 31, 2006
Copyright © The Korean Society for Molecular and Cellular Biology.
Younghwa Kim, Soontaek Hong, Mi Ra Noh, Soo Young Kim, Pil Woo Huh, Sun-Hwa Park, Woong Sun, Hyun Kim
Neuron-derived orphan receptor (NOR-1) is a member of the thyroid/steroid receptor superfamily that was originally identified in forebrain neuronal cells undergoing apoptosis. In addition to apoptotic stimuli, activation of several signal transduction pathways including direct neuronal depolarization regulates the expression of NOR-1. In this study we tested whether the expression of NOR-1 is changed following transient ischemic injury in the adult rat brain. NOR-1 mRNA increased rapidly in the dentate gyrus of the hippocampal formation and piriform cortex 3 h after transient global ischemia and returned to basal level at 6 h. On the other hand, oxygen-glucose deprivation of cultured cerebral cortical neurons did not alter the expression of NOR-1. These results suggest that expression of NOR-1 is differentially regulated in different brain regions in response to globally applied brain ischemia, but that hypoxia is not sufficient to induce its expression.
Keywords: Depolarization, Hypoxia, NOR-1, OGD, Transient Global Ischemia.