TOP

Research Article

Split Viewer

Mol. Cells 1999; 9(4): 440-445

Published online August 31, 1999

© The Korean Society for Molecular and Cellular Biology

Characterization of Ephrin-A1 and Ephrin-A4 as Ligands for the EphA8 Receptor Protein Tyrosine Kinase

Sunga Choi, Jaemin Jeong, Taewoong Kim, and Soochul Park

Abstract

The Eph receptors are the largest known family of receptor protein tyrosine kinases, which play important roles with their ligands called ephrin in the neural development, angiogenesis, and vascular network assembly. It was previously shown that ephrin-A2, -A3 and -AS bind to, and activate the EphA8 receptor tyrosine kinase, respectively. In this study, we have examined if there are other additional ephrin ligands interacting with the EphA8 receptor tyrosine kinase expressed in NIH3T3 fibroblasts. For this purpose, we have constructed chimeric ephrin-A1, -A4, -B1, -B2 or -B3 ligands consisting of the Fc portion of human IgG fused to their carboxyl-terminus. Both ephrin-A1 and ephrin-A4 chimeric ligands efficiently bound to the EphA8 receptor expressed in NIH3T3 fibroblasts, whereas the transmembrane ligands including ephrinB1, -B2 and -B3 did not. Additionally we have
demonstrated that both the EphA8-TrkB chimeric receptor and the EphA8 receptor expressed in NIH3T3 fibroblasts are efficiently tyrosine-phosphorylated upon stimulating with epthin-A1 or -A4 but none of transmembrane ephrin-B proteins. These results strongly indicate that the EphA8 receptor functions exclusively as an glycosyl phosphatidylinositol (GPI)-linked ephrin ligand-dependent receptor protein tyrosine kinase.

Article

Research Article

Mol. Cells 1999; 9(4): 440-445

Published online August 31, 1999

Copyright © The Korean Society for Molecular and Cellular Biology.

Characterization of Ephrin-A1 and Ephrin-A4 as Ligands for the EphA8 Receptor Protein Tyrosine Kinase

Sunga Choi, Jaemin Jeong, Taewoong Kim, and Soochul Park

Abstract

The Eph receptors are the largest known family of receptor protein tyrosine kinases, which play important roles with their ligands called ephrin in the neural development, angiogenesis, and vascular network assembly. It was previously shown that ephrin-A2, -A3 and -AS bind to, and activate the EphA8 receptor tyrosine kinase, respectively. In this study, we have examined if there are other additional ephrin ligands interacting with the EphA8 receptor tyrosine kinase expressed in NIH3T3 fibroblasts. For this purpose, we have constructed chimeric ephrin-A1, -A4, -B1, -B2 or -B3 ligands consisting of the Fc portion of human IgG fused to their carboxyl-terminus. Both ephrin-A1 and ephrin-A4 chimeric ligands efficiently bound to the EphA8 receptor expressed in NIH3T3 fibroblasts, whereas the transmembrane ligands including ephrinB1, -B2 and -B3 did not. Additionally we have
demonstrated that both the EphA8-TrkB chimeric receptor and the EphA8 receptor expressed in NIH3T3 fibroblasts are efficiently tyrosine-phosphorylated upon stimulating with epthin-A1 or -A4 but none of transmembrane ephrin-B proteins. These results strongly indicate that the EphA8 receptor functions exclusively as an glycosyl phosphatidylinositol (GPI)-linked ephrin ligand-dependent receptor protein tyrosine kinase.

Mol. Cells
Sep 30, 2023 Vol.46 No.9, pp. 527~572
COVER PICTURE
Chronic obstructive pulmonary disease (COPD) is marked by airspace enlargement (emphysema) and small airway fibrosis, leading to airflow obstruction and eventual respiratory failure. Shown is a microphotograph of hematoxylin and eosin (H&E)-stained histological sections of the enlarged alveoli as an indicator of emphysema. Piao et al. (pp. 558-572) demonstrate that recombinant human hyaluronan and proteoglycan link protein 1 (rhHAPLN1) significantly reduces the extended airspaces of the emphysematous alveoli by increasing the levels of TGF-β receptor I and SIRT1/6, as a previously unrecognized mechanism in human alveolar epithelial cells, and consequently mitigates COPD.

Share this article on

  • line

Molecules and Cells

eISSN 0219-1032
qr-code Download