TOP

Communication

Split Viewer

Mol. Cells 2005; 19(2): 289-293

Published online January 1, 1970

© The Korean Society for Molecular and Cellular Biology

Effects of Ser2 and Tyr6 Mutants of BAF53 on Cell Growth and p53-dependent Transcription

Jung Hwa Lee, Ji Yeon Lee, Seok Hoon Chang, Mi Jin Kang, Hyockman Kwon

Abstract

BAF53 is an actin-related protein that shuttles between nucleus and cytoplasm. In the nucleus, it constitutes an integral component of many chromatin-modifying complexes such as the SWI/SNF, TIP60, TRRAP, and TIP48/49 complexes. BAF53 is essential for growth, but its function remains elusive. BAF53 homologues from yeast to humans have a conserved N-terminal motif, MS_(G/A)(G/A)__(V/L)YGG, which is unique to these proteins. Previously we showed that over-expression of an N-terminal deletion mutant of BAF53 (BAF53_DN) reduced the viability of HEK293 and HeLa cells. When we replaced the serine 2 and tyrosine 6 of this N-terminal motif with alanine, over-expression of the alanine-replaced BAF53 strongly impaired the growth of HEK293 cells whereas replacement with aspartate/glutamate had no effect. The alanine-replaced BAF53 mutants also stimulated p53-dependent transcription, in which the SWI/SNF and TRRAP complexes are involved. Our results demonstrate that serine 2 and tyrosine 6 play important roles in BAF53 activity.

Keywords BAF53; Cell Viability; Chromatin-modifying Complex; p53; Transcription

Article

Communication

Mol. Cells 2005; 19(2): 289-293

Published online April 30, 2005

Copyright © The Korean Society for Molecular and Cellular Biology.

Effects of Ser2 and Tyr6 Mutants of BAF53 on Cell Growth and p53-dependent Transcription

Jung Hwa Lee, Ji Yeon Lee, Seok Hoon Chang, Mi Jin Kang, Hyockman Kwon

Abstract

BAF53 is an actin-related protein that shuttles between nucleus and cytoplasm. In the nucleus, it constitutes an integral component of many chromatin-modifying complexes such as the SWI/SNF, TIP60, TRRAP, and TIP48/49 complexes. BAF53 is essential for growth, but its function remains elusive. BAF53 homologues from yeast to humans have a conserved N-terminal motif, MS_(G/A)(G/A)__(V/L)YGG, which is unique to these proteins. Previously we showed that over-expression of an N-terminal deletion mutant of BAF53 (BAF53_DN) reduced the viability of HEK293 and HeLa cells. When we replaced the serine 2 and tyrosine 6 of this N-terminal motif with alanine, over-expression of the alanine-replaced BAF53 strongly impaired the growth of HEK293 cells whereas replacement with aspartate/glutamate had no effect. The alanine-replaced BAF53 mutants also stimulated p53-dependent transcription, in which the SWI/SNF and TRRAP complexes are involved. Our results demonstrate that serine 2 and tyrosine 6 play important roles in BAF53 activity.

Keywords: BAF53, Cell Viability, Chromatin-modifying Complex, p53, Transcription

Mol. Cells
Nov 30, 2023 Vol.46 No.11, pp. 655~725
COVER PICTURE
Kim et al. (pp. 710-724) demonstrated that a pathogen-derived Ralstonia pseudosolanacearum type III effector RipL delays flowering time and enhances susceptibility to bacterial infection in Arabidopsis thaliana. Shown is the RipL-expressing Arabidopsis plant, which displays general dampening of the transcriptional program during pathogen infection, grown in long-day conditions.

Share this article on

  • line

Molecules and Cells

eISSN 0219-1032
qr-code Download