Mol. Cells 2017; 40(10): 787-795
Published online October 27, 2017
https://doi.org/10.14348/molcells.2017.0160
© The Korean Society for Molecular and Cellular Biology
Correspondence to : *Correspondence: kangk@skku.edu (KJK); jykwon@skku.edu (JYK)
Avoiding ingestion of excessively salty food is essential for cation homeostasis that underlies various physiological processes in organisms. The molecular and cellular basis of the aversive salt taste, however, remains elusive. Through a behavioral reverse genetic screening, we discover that feeding suppression by Na+-rich food requires
Keywords capillary feeder assay, extracellular recordings, reverse genetic screening, salt taste aversion, variant ionotropic receptor
Ingestion of salt is necessary for numerous physiological functions including neuronal excitability, transmembrane transport of organic compounds in various tissues, and osmotic homeostasis of body fluids. However, excessive ingestion of salt often leads to dysregulation of such functions adversely affecting the wellbeing of the organism. For example, elevated Na+ concentration in the body is suspected to cause hypertension (Frisoli et al., 2012), gastrointestinal cancer (Tsugane et al., 2004), osteoporosis (He and Mac-Gregor, 2008), and autoimmune diseases (Kleinewietfeld et al., 2013). For the control of optimal salt intake, salt taste can either promote or suppress food ingestion depending on the concentration of salt. Low concentrations of Na+ salt (<100 mM) are appetitive, and are mainly sensed by amiloride-sensitive epithelial sodium channel (ENaC) expressed on the apical surface of taste cells in mice (Chandrashekar et al., 2010). In contrast, the taste of concentrated salt (high-salt taste) is aversive to animals ranging from nematodes to rodents (Chatzigeorgiou et al., 2013; Niewalda et al., 2008; Oka et al., 2013). However, the molecular mechanism by which high-salt taste is sensed remains to be identified (Yarmolinsky et al., 2009). The
Ionotropic receptors (IRs), which comprise a subgroup of the ionotropic glutamate receptor (iGluR) family, have been identified as critical sensory receptors in insects for environmental stimuli such as chemical compounds (Benton et al., 2009; Silbering et al., 2011), temperature changes (Ni et al., 2016) and moisture in the air (Knecht et al., 2016; 2017), rather than as regulators of synaptic transmission. In particular, IR76b expressed in L-bristle GRNs was proposed to serve as a functional
Capillary feeder assay was performed as described previously (Du et al., 2015). Briefly, twenty to forty flies (2–3 days old) were fasted for 16 h in a polypropylene vial containing a wet Kimwipe, and then transferred to a new vial for the feeding assay. Capillaries were filled with two types of liquid food by capillary action and inserted between the plug and vial wall with the depth of insertion consistent across inserted capillaries. In general, two sucrose capillary tubes and two sucrose-plus-chemical capillary tubes were offered to suppress noise of data between experiments. The flies were allowed to feed on the provided food sources under ambient lighting conditions for 30 min. Control vials without flies were used to determine the effects of evaporation in each experiment. After 30 min, the length of meniscus descent in capillaries was taken as food consumption, after the change due to evaporation was deducted. The number of live flies present in the vial was also recorded to determine the volume of consumption per fly. Avoidance index was obtained by deducting the fraction of consumed salty sucrose solution from the fraction of consumed sucrose solution with respect to total consumption in volume. Each allele of candidate genes in the reverse genetic screening was tested in four to five independent experiments.
Extracellular single-unit recordings were performed using the tip-recording method (Hodgson et al., 1955). Two to five-day-old flies were anesthetized by brief ice exposure. A reference electrode containing
All data were analyzed with Sigmaplot 12. Two group comparison was conducted with Student’s
To identify genes critical for aversive gustation in response to concentrated Na+ in food, the capillary feeder (CAFE) assay (Deshpande et al., 2014; Ja et al., 2007) was employed for a candidate-based genetic screening (Fig. 1A). The CAFE assay is regarded as a consistent, sensitive and quantitative feeding assay compared to proboscis extension reflex and two color dye-based choice assays (Deshpande et al., 2014). In particular, the two color dye-based choice assay often used in gustation studies such as Zhang et al. (2013) is inferior to the CAFE assay in two aspects. First, the two color choice assay depends on the experimenter’s subjective judgement of whether the color of the fly abdomen is red, blue or purple. Second, it does not take into account of the volume of food consumption unlike CAFE; if one fly consumes a small amount of one substance and another fly ingests a large amount of another substance, the two choices are scored as even. In our CAFE assays, one of two pairs of calibrated glass capillaries contains sucrose only, while the other pair contains NaCl/sucrose solution. The glass tubes were offered to starved flies in an empty vial. Avoidance indices were calculated (see “Materials and Methods”) and compared between genotypes. Indicative of strong avoidance to high NaCl concentrations, wild-type flies (
In
GRNs in L-bristles were previously proposed to require
Next, we examined if NaCl-provoked spikings in s-bristle GRNs are
Using two different
Reintroduction of
The molecular mechanism of high-salt taste has been enigmatic, while low-salt taste was identified to depend on ENaC in mammals. The only existing mechanistic model of high-Na+ taste is
Heterologous expression of
Mol. Cells 2017; 40(10): 787-795
Published online October 31, 2017 https://doi.org/10.14348/molcells.2017.0160
Copyright © The Korean Society for Molecular and Cellular Biology.
Min Jung Lee1,3,5, Ha Yeon Sung2,5, HyunJi Jo1,5, Hyung-Wook Kim4, Min Sung Choi2, Jae Young Kwon2,*, and KyeongJin Kang1,*
1Samsung Medical Center, Department of Anatomy and Cell Biology, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea, 2Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea, 3Dong-A ST Research Institute, Yongin 17073, Korea, 4College of Life Sciences, Sejong University, Seoul 05006, Korea
Correspondence to:*Correspondence: kangk@skku.edu (KJK); jykwon@skku.edu (JYK)
Avoiding ingestion of excessively salty food is essential for cation homeostasis that underlies various physiological processes in organisms. The molecular and cellular basis of the aversive salt taste, however, remains elusive. Through a behavioral reverse genetic screening, we discover that feeding suppression by Na+-rich food requires
Keywords: capillary feeder assay, extracellular recordings, reverse genetic screening, salt taste aversion, variant ionotropic receptor
Ingestion of salt is necessary for numerous physiological functions including neuronal excitability, transmembrane transport of organic compounds in various tissues, and osmotic homeostasis of body fluids. However, excessive ingestion of salt often leads to dysregulation of such functions adversely affecting the wellbeing of the organism. For example, elevated Na+ concentration in the body is suspected to cause hypertension (Frisoli et al., 2012), gastrointestinal cancer (Tsugane et al., 2004), osteoporosis (He and Mac-Gregor, 2008), and autoimmune diseases (Kleinewietfeld et al., 2013). For the control of optimal salt intake, salt taste can either promote or suppress food ingestion depending on the concentration of salt. Low concentrations of Na+ salt (<100 mM) are appetitive, and are mainly sensed by amiloride-sensitive epithelial sodium channel (ENaC) expressed on the apical surface of taste cells in mice (Chandrashekar et al., 2010). In contrast, the taste of concentrated salt (high-salt taste) is aversive to animals ranging from nematodes to rodents (Chatzigeorgiou et al., 2013; Niewalda et al., 2008; Oka et al., 2013). However, the molecular mechanism by which high-salt taste is sensed remains to be identified (Yarmolinsky et al., 2009). The
Ionotropic receptors (IRs), which comprise a subgroup of the ionotropic glutamate receptor (iGluR) family, have been identified as critical sensory receptors in insects for environmental stimuli such as chemical compounds (Benton et al., 2009; Silbering et al., 2011), temperature changes (Ni et al., 2016) and moisture in the air (Knecht et al., 2016; 2017), rather than as regulators of synaptic transmission. In particular, IR76b expressed in L-bristle GRNs was proposed to serve as a functional
Capillary feeder assay was performed as described previously (Du et al., 2015). Briefly, twenty to forty flies (2–3 days old) were fasted for 16 h in a polypropylene vial containing a wet Kimwipe, and then transferred to a new vial for the feeding assay. Capillaries were filled with two types of liquid food by capillary action and inserted between the plug and vial wall with the depth of insertion consistent across inserted capillaries. In general, two sucrose capillary tubes and two sucrose-plus-chemical capillary tubes were offered to suppress noise of data between experiments. The flies were allowed to feed on the provided food sources under ambient lighting conditions for 30 min. Control vials without flies were used to determine the effects of evaporation in each experiment. After 30 min, the length of meniscus descent in capillaries was taken as food consumption, after the change due to evaporation was deducted. The number of live flies present in the vial was also recorded to determine the volume of consumption per fly. Avoidance index was obtained by deducting the fraction of consumed salty sucrose solution from the fraction of consumed sucrose solution with respect to total consumption in volume. Each allele of candidate genes in the reverse genetic screening was tested in four to five independent experiments.
Extracellular single-unit recordings were performed using the tip-recording method (Hodgson et al., 1955). Two to five-day-old flies were anesthetized by brief ice exposure. A reference electrode containing
All data were analyzed with Sigmaplot 12. Two group comparison was conducted with Student’s
To identify genes critical for aversive gustation in response to concentrated Na+ in food, the capillary feeder (CAFE) assay (Deshpande et al., 2014; Ja et al., 2007) was employed for a candidate-based genetic screening (Fig. 1A). The CAFE assay is regarded as a consistent, sensitive and quantitative feeding assay compared to proboscis extension reflex and two color dye-based choice assays (Deshpande et al., 2014). In particular, the two color dye-based choice assay often used in gustation studies such as Zhang et al. (2013) is inferior to the CAFE assay in two aspects. First, the two color choice assay depends on the experimenter’s subjective judgement of whether the color of the fly abdomen is red, blue or purple. Second, it does not take into account of the volume of food consumption unlike CAFE; if one fly consumes a small amount of one substance and another fly ingests a large amount of another substance, the two choices are scored as even. In our CAFE assays, one of two pairs of calibrated glass capillaries contains sucrose only, while the other pair contains NaCl/sucrose solution. The glass tubes were offered to starved flies in an empty vial. Avoidance indices were calculated (see “Materials and Methods”) and compared between genotypes. Indicative of strong avoidance to high NaCl concentrations, wild-type flies (
In
GRNs in L-bristles were previously proposed to require
Next, we examined if NaCl-provoked spikings in s-bristle GRNs are
Using two different
Reintroduction of
The molecular mechanism of high-salt taste has been enigmatic, while low-salt taste was identified to depend on ENaC in mammals. The only existing mechanistic model of high-Na+ taste is
Heterologous expression of