TOP

Research Article

Split Viewer

Mol. Cells 2002; 14(3): 323-331

Published online January 1, 1970

© The Korean Society for Molecular and Cellular Biology

The Control of mRNA Stability in Response to Extracellular

Jaekyung Shim, Michael Karin

Abstract

Regulated mRNA turnover is a highly important process in control of gene expression. The specific sequence elements in mRNA modulate the stability of different mRNAs, which varies considerably in response to extracellular stimuli. But the mechanistic basis for regulation of mRNA turnover remains nebulous. Recent works indicate that several signaling pathways have been implicated in regulating the decay of specific mRNA and certain ARE binding proteins mediate rapid degradation of the mRNAs. This review provides a current knowledge of diverse extracellular signals contributing to stabilization of short-lived mRNA.

Keywords ARE, Exosome, AUBP, mRNA Turnover, Trans-acting Factors

Article

Research Article

Mol. Cells 2002; 14(3): 323-331

Published online December 31, 2002

Copyright © The Korean Society for Molecular and Cellular Biology.

The Control of mRNA Stability in Response to Extracellular

Jaekyung Shim, Michael Karin

Abstract

Regulated mRNA turnover is a highly important process in control of gene expression. The specific sequence elements in mRNA modulate the stability of different mRNAs, which varies considerably in response to extracellular stimuli. But the mechanistic basis for regulation of mRNA turnover remains nebulous. Recent works indicate that several signaling pathways have been implicated in regulating the decay of specific mRNA and certain ARE binding proteins mediate rapid degradation of the mRNAs. This review provides a current knowledge of diverse extracellular signals contributing to stabilization of short-lived mRNA.

Keywords: ARE, Exosome, AUBP, mRNA Turnover, Trans-acting Factors

Mol. Cells
Sep 30, 2023 Vol.46 No.9, pp. 527~572
COVER PICTURE
Chronic obstructive pulmonary disease (COPD) is marked by airspace enlargement (emphysema) and small airway fibrosis, leading to airflow obstruction and eventual respiratory failure. Shown is a microphotograph of hematoxylin and eosin (H&E)-stained histological sections of the enlarged alveoli as an indicator of emphysema. Piao et al. (pp. 558-572) demonstrate that recombinant human hyaluronan and proteoglycan link protein 1 (rhHAPLN1) significantly reduces the extended airspaces of the emphysematous alveoli by increasing the levels of TGF-β receptor I and SIRT1/6, as a previously unrecognized mechanism in human alveolar epithelial cells, and consequently mitigates COPD.

Share this article on

  • line

Molecules and Cells

eISSN 0219-1032
qr-code Download