TOP

Minireview

Split Viewer

Mol. Cells 2003; 15(3): 283-293

Published online January 1, 1970

© The Korean Society for Molecular and Cellular Biology

TRAIL, a Mighty Apoptosis Inducer

Youngleem Kim, Dai-Wu Seol

Abstract

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a membrane-bound cytokine molecule that belongs to the family of tumor necrosis factor (TNF). TRAIL has been shown to be a potent apoptosis inducer in a wide variety of cancer cells in vitro and to limit tumor growth efficiently in vivo without damaging normal tissues. These features have focused considerable attention on TRAIL as a potential therapeutic agent to treat human cancers. Recent data also suggest the implication of TRAIL in a natural defense mechanism since its abrogation results in certain autoimmune disorders. This review will summarize recent progress in TRAIL research, including understanding of apoptotic signaling, regulation of TRAIL action, and possible therapeutic applications.

Keywords Apoptosis; Cancer; TRAIL, Apoptosis, Cancer, TRAIL

Article

Minireview

Mol. Cells 2003; 15(3): 283-293

Published online June 30, 2003

Copyright © The Korean Society for Molecular and Cellular Biology.

TRAIL, a Mighty Apoptosis Inducer

Youngleem Kim, Dai-Wu Seol

Abstract

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a membrane-bound cytokine molecule that belongs to the family of tumor necrosis factor (TNF). TRAIL has been shown to be a potent apoptosis inducer in a wide variety of cancer cells in vitro and to limit tumor growth efficiently in vivo without damaging normal tissues. These features have focused considerable attention on TRAIL as a potential therapeutic agent to treat human cancers. Recent data also suggest the implication of TRAIL in a natural defense mechanism since its abrogation results in certain autoimmune disorders. This review will summarize recent progress in TRAIL research, including understanding of apoptotic signaling, regulation of TRAIL action, and possible therapeutic applications.

Keywords: Apoptosis, Cancer, TRAIL, Apoptosis, Cancer, TRAIL

Mol. Cells
Jun 30, 2023 Vol.46 No.6, pp. 329~398
COVER PICTURE
The cellular proteostasis network is adaptively modulated upon cellular stress, thereby protecting cells from proteostasis collapse. Heat shock induces the translocation of misfolded proteins and the chaperone protein HSP70 into nucleolus, where nuclear protein quality control primarily occurs. Nuclear RNA export factor 1 (green), nucleolar protein fibrillarin (red), and nuclei (blue) were visualized in NIH3T3 cells under basal (left) and heat shock (right) conditions (Park et al., pp. 374-386).

Share this article on

  • line
  • mail

Related articles in Mol. Cells

Molecules and Cells

eISSN 0219-1032
qr-code Download