TOP

Research Article

Split Viewer

Mol. Cells 2004; 17(2): 347-352

Published online January 1, 1970

© The Korean Society for Molecular and Cellular Biology

Inactivation of Mitochondrial Electron Transport by Photosensitization of a Pheophorbide a Derivative

Chang Su Kim, Chang-Hee Lee, Phil Ho Lee, Sanghwa Han

Abstract

We examined the damage to mitochondrial electron transport caused by photosensitization of a pheophorbide a derivative, DH-I-180-3, shown recently to induce necrosis of lung carcinoma cells with low dark toxicity. Confocal microscopy showed that DH-I-180-3 co-localized with dihydrorhodamine-123 suggesting that it mainly accumulates in mitochondria. The photosensitizer alone in the dark did not affect mitochondrial electron transport. Illumination of isolated mitochondria in the presence of DH-I-180-3 resulted in inhibition of both NADH- and succinate-dependent respiration. Measurement of the activity of each component of the electron transport chain revealed that Complex I and III were very susceptible to the treatment whereas Complex IV was resistant. We conclude that the photosensitizer is localized in mitochondria and, upon illumination, produces reactive oxygen species that inactivate Complexes I and III.

Keywords Chlorin; Electron Transport Chain; Mitochondria Pheophorbide a; Photosensitizer

Article

Research Article

Mol. Cells 2004; 17(2): 347-352

Published online April 30, 2004

Copyright © The Korean Society for Molecular and Cellular Biology.

Inactivation of Mitochondrial Electron Transport by Photosensitization of a Pheophorbide a Derivative

Chang Su Kim, Chang-Hee Lee, Phil Ho Lee, Sanghwa Han

Abstract

We examined the damage to mitochondrial electron transport caused by photosensitization of a pheophorbide a derivative, DH-I-180-3, shown recently to induce necrosis of lung carcinoma cells with low dark toxicity. Confocal microscopy showed that DH-I-180-3 co-localized with dihydrorhodamine-123 suggesting that it mainly accumulates in mitochondria. The photosensitizer alone in the dark did not affect mitochondrial electron transport. Illumination of isolated mitochondria in the presence of DH-I-180-3 resulted in inhibition of both NADH- and succinate-dependent respiration. Measurement of the activity of each component of the electron transport chain revealed that Complex I and III were very susceptible to the treatment whereas Complex IV was resistant. We conclude that the photosensitizer is localized in mitochondria and, upon illumination, produces reactive oxygen species that inactivate Complexes I and III.

Keywords: Chlorin, Electron Transport Chain, Mitochondria Pheophorbide a, Photosensitizer

Mol. Cells
Sep 30, 2023 Vol.46 No.9, pp. 527~572
COVER PICTURE
Chronic obstructive pulmonary disease (COPD) is marked by airspace enlargement (emphysema) and small airway fibrosis, leading to airflow obstruction and eventual respiratory failure. Shown is a microphotograph of hematoxylin and eosin (H&E)-stained histological sections of the enlarged alveoli as an indicator of emphysema. Piao et al. (pp. 558-572) demonstrate that recombinant human hyaluronan and proteoglycan link protein 1 (rhHAPLN1) significantly reduces the extended airspaces of the emphysematous alveoli by increasing the levels of TGF-β receptor I and SIRT1/6, as a previously unrecognized mechanism in human alveolar epithelial cells, and consequently mitigates COPD.

Share this article on

  • line

Molecules and Cells

eISSN 0219-1032
qr-code Download