TOP

Research Article

Split Viewer

Mol. Cells 2004; 17(2): 248-254

Published online January 1, 1970

© The Korean Society for Molecular and Cellular Biology

Role of Occludin, a Tight Junction Protein, in Blastocoel Formation, and in the Paracellular Permeability and Differentiation of Trophectoderm in Preimplantation Mouse Embryos

Jinmee Kim, Myung Chan Gye, Moon Kyoo Kim

Abstract

Tight junctions (TJ) are critical for blastocoel formation in mammalian embryos. The present study aimed to examine the role of tight junctions in the differentiation of the trophectoderm (TE), and in the pluripotency of blastomeres, as well as in the formation and integrity of the blastocoel. We examined the effect of occludin antibody on blastocoel formation, blastocyst permeability, and expression of H19 and Oct-4, markers of TE differentiation and blastomere pluripotency, respectively. Eight-cell mouse embryos and morulae were cultured in the presence or absence of occludin antibody for 31 h. Occludin antibody inhibited blastocoel formation and increased permeability of the TE of nascent and expanding blastocysts to FITC-dextran (4 kDa), a permeability tracer. At the same time Oct-4 expression increased while expression of H19 became barely detectable. These observations indicate that occludin is involved in establishing the blastocoel, as well as in maintaining its impermeability, and that the development of tight junction is critical for TE formation in mouse embryos.

Keywords Blastocoel; H19; Mouse; Occludin; Oct-4; Preimplantation Embryos; Tight Junction

Article

Research Article

Mol. Cells 2004; 17(2): 248-254

Published online April 30, 2004

Copyright © The Korean Society for Molecular and Cellular Biology.

Role of Occludin, a Tight Junction Protein, in Blastocoel Formation, and in the Paracellular Permeability and Differentiation of Trophectoderm in Preimplantation Mouse Embryos

Jinmee Kim, Myung Chan Gye, Moon Kyoo Kim

Abstract

Tight junctions (TJ) are critical for blastocoel formation in mammalian embryos. The present study aimed to examine the role of tight junctions in the differentiation of the trophectoderm (TE), and in the pluripotency of blastomeres, as well as in the formation and integrity of the blastocoel. We examined the effect of occludin antibody on blastocoel formation, blastocyst permeability, and expression of H19 and Oct-4, markers of TE differentiation and blastomere pluripotency, respectively. Eight-cell mouse embryos and morulae were cultured in the presence or absence of occludin antibody for 31 h. Occludin antibody inhibited blastocoel formation and increased permeability of the TE of nascent and expanding blastocysts to FITC-dextran (4 kDa), a permeability tracer. At the same time Oct-4 expression increased while expression of H19 became barely detectable. These observations indicate that occludin is involved in establishing the blastocoel, as well as in maintaining its impermeability, and that the development of tight junction is critical for TE formation in mouse embryos.

Keywords: Blastocoel, H19, Mouse, Occludin, Oct-4, Preimplantation Embryos, Tight Junction

Mol. Cells
Sep 30, 2023 Vol.46 No.9, pp. 527~572
COVER PICTURE
Chronic obstructive pulmonary disease (COPD) is marked by airspace enlargement (emphysema) and small airway fibrosis, leading to airflow obstruction and eventual respiratory failure. Shown is a microphotograph of hematoxylin and eosin (H&E)-stained histological sections of the enlarged alveoli as an indicator of emphysema. Piao et al. (pp. 558-572) demonstrate that recombinant human hyaluronan and proteoglycan link protein 1 (rhHAPLN1) significantly reduces the extended airspaces of the emphysematous alveoli by increasing the levels of TGF-β receptor I and SIRT1/6, as a previously unrecognized mechanism in human alveolar epithelial cells, and consequently mitigates COPD.

Share this article on

  • line

Molecules and Cells

eISSN 0219-1032
qr-code Download