TOP

Minireview

Split Viewer

Mol. Cells 2004; 17(2): 181-187

Published online January 1, 1970

© The Korean Society for Molecular and Cellular Biology

Syndecans-2 and -4; Close Cousins, but not Identical Twins

Eok-Soo Oh, John R. Couchman

Abstract

The vertebrate syndecans, which make up a four-member family of small type I transmembrane heparan sulfate proteoglycans, constitute evolutionarily conserved family proteins. In particular, sequences in the transmembrane and cytoplasmic domains are a unifying feature within the family. However, the extracellular domain sequences are molecule-specific, implying that different syndecans have evolved to carry out similar, but non-identical, functions. While all four syndecans have been implicated in regulation of the cytoskeleton, their roles are clearly complex. Recent developments indicate that the closely related syndecan-2 and -4 have separable functions, though both bind a number of ligands through their heparan sulfate chains. The specification of these activities is probably core protein related, but is it due to a distinct expression pattern or molecule-specific regulatory mechanisms? Although there is not yet enough data to provide unambiguous answers, here we shall review the known functions and regulatory mechanisms of syndecan-2 and -4.

Keywords Cell Adhesion; Cytoskeleton; Extracellular Matrix; Signal Transduction; Syndecans

Article

Minireview

Mol. Cells 2004; 17(2): 181-187

Published online April 30, 2004

Copyright © The Korean Society for Molecular and Cellular Biology.

Syndecans-2 and -4; Close Cousins, but not Identical Twins

Eok-Soo Oh, John R. Couchman

Abstract

The vertebrate syndecans, which make up a four-member family of small type I transmembrane heparan sulfate proteoglycans, constitute evolutionarily conserved family proteins. In particular, sequences in the transmembrane and cytoplasmic domains are a unifying feature within the family. However, the extracellular domain sequences are molecule-specific, implying that different syndecans have evolved to carry out similar, but non-identical, functions. While all four syndecans have been implicated in regulation of the cytoskeleton, their roles are clearly complex. Recent developments indicate that the closely related syndecan-2 and -4 have separable functions, though both bind a number of ligands through their heparan sulfate chains. The specification of these activities is probably core protein related, but is it due to a distinct expression pattern or molecule-specific regulatory mechanisms? Although there is not yet enough data to provide unambiguous answers, here we shall review the known functions and regulatory mechanisms of syndecan-2 and -4.

Keywords: Cell Adhesion, Cytoskeleton, Extracellular Matrix, Signal Transduction, Syndecans

Mol. Cells
Sep 30, 2023 Vol.46 No.9, pp. 527~572
COVER PICTURE
Chronic obstructive pulmonary disease (COPD) is marked by airspace enlargement (emphysema) and small airway fibrosis, leading to airflow obstruction and eventual respiratory failure. Shown is a microphotograph of hematoxylin and eosin (H&E)-stained histological sections of the enlarged alveoli as an indicator of emphysema. Piao et al. (pp. 558-572) demonstrate that recombinant human hyaluronan and proteoglycan link protein 1 (rhHAPLN1) significantly reduces the extended airspaces of the emphysematous alveoli by increasing the levels of TGF-β receptor I and SIRT1/6, as a previously unrecognized mechanism in human alveolar epithelial cells, and consequently mitigates COPD.

Share this article on

  • line

Molecules and Cells

eISSN 0219-1032
qr-code Download