TOP

Research Article

Split Viewer

Mol. Cells 2008; 26(3): 236-242

Published online January 1, 1970

© The Korean Society for Molecular and Cellular Biology

The ABA Effect on the Accumulation of an Invertase Inhibitor Transcript that Is Driven by the CAMV35S Promoter in ARABIDOPSIS

Eun-Ji Koh, Sung June Lee, Suk-Whan Hong, Hoi Seon Lee and Hojoung Lee

Abstract

Invertase (Beta-D-fructofuranosidase; EC 3.2.1.26) catalyzes the conversion of sucrose into glucose and fructose and is involved in an array of important processes, including phloem unloading, carbon partitioning, the response to pathogens, and the control of cell differentiation and development. Its importance may have caused the invertases to evolve into a multigene family whose members are regulated by a variety of different mechanisms, such as pH, sucrose levels, and inhibitor proteins. Although putative invertase inhibitors in the Arabidopsis genome are easy to locate, few studies have been conducted to elucidate their individual functions in vivo in plant growth and development because of their high redundancy. In this study we assessed the functional role of the putative invertase inhibitors in Arabidopsis by generating transgenic plants harboring a putative invertase inhibitor gene under the control of the CaMV35S promoter. A transgenic plant that expressed high levels of the putative invertase inhibitor transcript when grown under normal conditions was chosen for the current study. To our surprise, the stability of the invertase inhibitor transcripts was shown to be down-regulated by the phytohormone ABA (abscisic acid). It is well established that ABA enhances invertase activity in vivo but the underlying mechanisms are still poorly understood. Our results thus suggest that one way ABA regulates invertase activity is by down-regulating its inhibitor.

Keywords ABA, Abiotic Stress, Arabidopsis thaliana, Invertase, Invertase Inhibitor, Salt Stress

Article

Research Article

Mol. Cells 2008; 26(3): 236-242

Published online September 30, 2008

Copyright © The Korean Society for Molecular and Cellular Biology.

The ABA Effect on the Accumulation of an Invertase Inhibitor Transcript that Is Driven by the CAMV35S Promoter in ARABIDOPSIS

Eun-Ji Koh, Sung June Lee, Suk-Whan Hong, Hoi Seon Lee and Hojoung Lee

Abstract

Invertase (Beta-D-fructofuranosidase; EC 3.2.1.26) catalyzes the conversion of sucrose into glucose and fructose and is involved in an array of important processes, including phloem unloading, carbon partitioning, the response to pathogens, and the control of cell differentiation and development. Its importance may have caused the invertases to evolve into a multigene family whose members are regulated by a variety of different mechanisms, such as pH, sucrose levels, and inhibitor proteins. Although putative invertase inhibitors in the Arabidopsis genome are easy to locate, few studies have been conducted to elucidate their individual functions in vivo in plant growth and development because of their high redundancy. In this study we assessed the functional role of the putative invertase inhibitors in Arabidopsis by generating transgenic plants harboring a putative invertase inhibitor gene under the control of the CaMV35S promoter. A transgenic plant that expressed high levels of the putative invertase inhibitor transcript when grown under normal conditions was chosen for the current study. To our surprise, the stability of the invertase inhibitor transcripts was shown to be down-regulated by the phytohormone ABA (abscisic acid). It is well established that ABA enhances invertase activity in vivo but the underlying mechanisms are still poorly understood. Our results thus suggest that one way ABA regulates invertase activity is by down-regulating its inhibitor.

Keywords: ABA, Abiotic Stress, Arabidopsis thaliana, Invertase, Invertase Inhibitor, Salt Stress

Mol. Cells
Sep 30, 2023 Vol.46 No.9, pp. 527~572
COVER PICTURE
Chronic obstructive pulmonary disease (COPD) is marked by airspace enlargement (emphysema) and small airway fibrosis, leading to airflow obstruction and eventual respiratory failure. Shown is a microphotograph of hematoxylin and eosin (H&E)-stained histological sections of the enlarged alveoli as an indicator of emphysema. Piao et al. (pp. 558-572) demonstrate that recombinant human hyaluronan and proteoglycan link protein 1 (rhHAPLN1) significantly reduces the extended airspaces of the emphysematous alveoli by increasing the levels of TGF-β receptor I and SIRT1/6, as a previously unrecognized mechanism in human alveolar epithelial cells, and consequently mitigates COPD.

Share this article on

  • line

Related articles in Mol. Cells

Molecules and Cells

eISSN 0219-1032
qr-code Download