Mol. Cells 2004; 18(1): 17-23
Published online January 1, 1970
© The Korean Society for Molecular and Cellular Biology
Nuclear factor of activated T cells (NFAT) plays a central role in the immune response, and the immuno-suppressive drugs, cyclosporin A and FK-506, have been developed to inhibit it. However, due to the toxic effects of these drugs, which derive from their ability to inhibit calcineurin in non-immune tissues, the identification of small compounds that target NFAT directly could be an approach to developing less toxic immunosuppressive therapy. Using an in vitro selection technology termed SELEX on a combinatorial RNA library with 40 nucleotide-long random sequences, we have isolated two RNA aptamers to the NFAT DNA binding domain (DBD). Gel retardation assays and surface plasmon resonance measurements showed that the aptamers have a specific and high affinity (apparent KD~10 to 100 nM) for the NFAT DBD. Enzymatic probing analysis showed that the two RNA aptamers have similar structures and share a sequence that forms an apical loop. Moreover, RNase footprinting analysis showed that the shared sequence (GATATGAAGGA/ TGTG/AGAGAG) is critical for binding to both NFATp DBD and NFATc DBD. These results suggest that short RNAs identified in this study is a specific aptamer to NFAT DBD, and hence could be applied not only for the delineation of NFAT functions but for the development of potent immune modulating lead compounds.
Keywords DNA Binding Domain; NFAT; RNA Aptamer; SELEX.
Mol. Cells 2004; 18(1): 17-23
Published online August 31, 2004
Copyright © The Korean Society for Molecular and Cellular Biology.
Jung-Sun Cho, Young Ju Lee, Kyung-Sook Shin, Sujin Jeong, Jungchan Park, Seong-Wook Lee
Nuclear factor of activated T cells (NFAT) plays a central role in the immune response, and the immuno-suppressive drugs, cyclosporin A and FK-506, have been developed to inhibit it. However, due to the toxic effects of these drugs, which derive from their ability to inhibit calcineurin in non-immune tissues, the identification of small compounds that target NFAT directly could be an approach to developing less toxic immunosuppressive therapy. Using an in vitro selection technology termed SELEX on a combinatorial RNA library with 40 nucleotide-long random sequences, we have isolated two RNA aptamers to the NFAT DNA binding domain (DBD). Gel retardation assays and surface plasmon resonance measurements showed that the aptamers have a specific and high affinity (apparent KD~10 to 100 nM) for the NFAT DBD. Enzymatic probing analysis showed that the two RNA aptamers have similar structures and share a sequence that forms an apical loop. Moreover, RNase footprinting analysis showed that the shared sequence (GATATGAAGGA/ TGTG/AGAGAG) is critical for binding to both NFATp DBD and NFATc DBD. These results suggest that short RNAs identified in this study is a specific aptamer to NFAT DBD, and hence could be applied not only for the delineation of NFAT functions but for the development of potent immune modulating lead compounds.
Keywords: DNA Binding Domain, NFAT, RNA Aptamer, SELEX.