TOP

Minireview

Split Viewer

Mol. Cells 2005; 19(2): 167-179

Published online January 1, 1970

© The Korean Society for Molecular and Cellular Biology

Drosophila melanogaster: a Model for the Study of DNA Damage Checkpoint Response

Young-Han Song

Abstract

The cells of metazoans respond to DNA damage by either arresting their cell cycle in order to repair the DNA, or by undergoing apoptosis. This response is highly conserved across species, and many of the genes involved in this DNA damage response have been shown to be inactivated in human cancers. This suggests the importance of DNA damage response with regard to the prevention of cancer. The DNA damage checkpoint responses vary greatly depending on the developmental context, cell type, gene expression profile, and the degree and nature of the DNA lesions. More valuable information can be obtained from studies utilizing whole organisms in which the molecular basis of development has been well established, such as Drosophila. Since the discovery of the Drosophila p53 orthologue, various aspects of DNA damage responses have been studied in Drosophila. In this review, I will summarize the current knowledge on the DNA damage checkpoint response in Drosophila. With the ease of genetic, cellular, and cytological approaches, Drosophila will become an increasingly valuable model organism for the study of mechanisms inherent to cancer formation associated with defects in the DNA damage pathway.

Keywords Apoptosis; Cancer; Cell Cycle; Checkpoint; DNA Damage; Drosophila

Article

Minireview

Mol. Cells 2005; 19(2): 167-179

Published online April 30, 2005

Copyright © The Korean Society for Molecular and Cellular Biology.

Drosophila melanogaster: a Model for the Study of DNA Damage Checkpoint Response

Young-Han Song

Abstract

The cells of metazoans respond to DNA damage by either arresting their cell cycle in order to repair the DNA, or by undergoing apoptosis. This response is highly conserved across species, and many of the genes involved in this DNA damage response have been shown to be inactivated in human cancers. This suggests the importance of DNA damage response with regard to the prevention of cancer. The DNA damage checkpoint responses vary greatly depending on the developmental context, cell type, gene expression profile, and the degree and nature of the DNA lesions. More valuable information can be obtained from studies utilizing whole organisms in which the molecular basis of development has been well established, such as Drosophila. Since the discovery of the Drosophila p53 orthologue, various aspects of DNA damage responses have been studied in Drosophila. In this review, I will summarize the current knowledge on the DNA damage checkpoint response in Drosophila. With the ease of genetic, cellular, and cytological approaches, Drosophila will become an increasingly valuable model organism for the study of mechanisms inherent to cancer formation associated with defects in the DNA damage pathway.

Keywords: Apoptosis, Cancer, Cell Cycle, Checkpoint, DNA Damage, Drosophila

Mol. Cells
Jun 30, 2023 Vol.46 No.6, pp. 329~398
COVER PICTURE
The cellular proteostasis network is adaptively modulated upon cellular stress, thereby protecting cells from proteostasis collapse. Heat shock induces the translocation of misfolded proteins and the chaperone protein HSP70 into nucleolus, where nuclear protein quality control primarily occurs. Nuclear RNA export factor 1 (green), nucleolar protein fibrillarin (red), and nuclei (blue) were visualized in NIH3T3 cells under basal (left) and heat shock (right) conditions (Park et al., pp. 374-386).

Share this article on

  • line
  • mail

Molecules and Cells

eISSN 0219-1032
qr-code Download