TOP

Minireview

Split Viewer

Mol. Cells 2006; 21(1): 7-20

Published online January 1, 1970

© The Korean Society for Molecular and Cellular Biology

Role of HIV Vpr as a Regulator of Apoptosis and an Effector on Bystander Cells

Ho Suck Moon, Joo-Sung Yang

Abstract

The major event in human immunodeficiency virus type 1 (HIV-1) infection is the death of many cells related to host immune response. The demise of these cells is normally explained by cell suicide mechanism, apoptosis. Interestingly, the decrease in the number of immune cells, such as non-CD4+ cells as well as CD4+ T cells, in HIV infection usually occurs in uninfected bystander cells, not in directly infected cells. It has, therefore, been suggested that several soluble factors, including viral protein R (Vpr), are released from the infected cells and induce the death of bystander cells. Some studies show that Vpr interacts directly with adenine nucleotide translocator (ANT) to induce mitochondrial membrane permeabilization (MMP). The MMP results in release of some apoptogenic factors such as cytochrome-c (cyt-c) and apoptosis-inducing factor (AIF). Vpr also has indirect effect on mitochondria through enhancing the level of caspase-9 transcription and suppressing nuclear factor-kappa B (NF-kB). The involvement of p53 in Vpr-induced apoptosis remains to be studied. On the other hand, low level of Vpr expression has anti-apoptotic effect, whereas it’s high level of expression induces apoptosis. Extracellular Vpr also exhibits cytotoxicity to uninfected by-stander cells through apoptotic or necrotic mechanism. The facts that Vpr has cytotoxic effect on both infected cells and bystander cells, and that it exhibits both pro- and anti-apoptotic activity may explain its role in viral survival and disease progression.

Keywords Human Immunodeficiency Virus, Mitochondria, Vpr, Apoptosis, Bystander Cells

Article

Minireview

Mol. Cells 2006; 21(1): 7-20

Published online February 28, 2006

Copyright © The Korean Society for Molecular and Cellular Biology.

Role of HIV Vpr as a Regulator of Apoptosis and an Effector on Bystander Cells

Ho Suck Moon, Joo-Sung Yang

Abstract

The major event in human immunodeficiency virus type 1 (HIV-1) infection is the death of many cells related to host immune response. The demise of these cells is normally explained by cell suicide mechanism, apoptosis. Interestingly, the decrease in the number of immune cells, such as non-CD4+ cells as well as CD4+ T cells, in HIV infection usually occurs in uninfected bystander cells, not in directly infected cells. It has, therefore, been suggested that several soluble factors, including viral protein R (Vpr), are released from the infected cells and induce the death of bystander cells. Some studies show that Vpr interacts directly with adenine nucleotide translocator (ANT) to induce mitochondrial membrane permeabilization (MMP). The MMP results in release of some apoptogenic factors such as cytochrome-c (cyt-c) and apoptosis-inducing factor (AIF). Vpr also has indirect effect on mitochondria through enhancing the level of caspase-9 transcription and suppressing nuclear factor-kappa B (NF-kB). The involvement of p53 in Vpr-induced apoptosis remains to be studied. On the other hand, low level of Vpr expression has anti-apoptotic effect, whereas it’s high level of expression induces apoptosis. Extracellular Vpr also exhibits cytotoxicity to uninfected by-stander cells through apoptotic or necrotic mechanism. The facts that Vpr has cytotoxic effect on both infected cells and bystander cells, and that it exhibits both pro- and anti-apoptotic activity may explain its role in viral survival and disease progression.

Keywords: Human Immunodeficiency Virus, Mitochondria, Vpr, Apoptosis, Bystander Cells

Mol. Cells
Jun 30, 2023 Vol.46 No.6, pp. 329~398
COVER PICTURE
The cellular proteostasis network is adaptively modulated upon cellular stress, thereby protecting cells from proteostasis collapse. Heat shock induces the translocation of misfolded proteins and the chaperone protein HSP70 into nucleolus, where nuclear protein quality control primarily occurs. Nuclear RNA export factor 1 (green), nucleolar protein fibrillarin (red), and nuclei (blue) were visualized in NIH3T3 cells under basal (left) and heat shock (right) conditions (Park et al., pp. 374-386).

Share this article on

  • line
  • mail

Related articles in Mol. Cells

Molecules and Cells

eISSN 0219-1032
qr-code Download