Mol. Cells 2018; 41(7): 646-652
Published online June 25, 2018
https://doi.org/10.14348/molcells.2018.0014
© The Korean Society for Molecular and Cellular Biology
Correspondence to : *Correspondence: ylee@kookmin.ac.kr
Neurodegeneration can result in memory loss in the central nervous system (CNS) and impairment of taste and smell in the peripheral nervous system (PNS). The neurodegeneration seen in Parkinson’s disease (PD) is characterized by functional loss of dopaminergic neurons. Recent studies have also found a role for dopaminergic neurons in regulating taste memory rewards in insects. To investigate how taste memories and sugar sensitivity can be affected in PD, we utilized the
Keywords
Parkinson’s disease (PD) is a neurodegenerative condition that is characterized by the loss of motor function. The reduction or loss of dopaminergic (DA) neurons from substantia nigra of the brain is a hallmark of PD (Damier et al., 1999).
PD also causes defects in odor perception (Ansari and Johnson, 1975), and this odor impairment can be used as a diagnostic feature (Tissinhg et al., 2011). Researchers also considered whether PD patients have impairments in taste perception. While a 2005 study did not find a significant difference in the taste sensitivity between control and PD patients groups (Sienkiewicz et al., 2005), a later study in 2009 of 25 non-demented PD patients and 74 control patients found a direct correlation between taste impairment and PD (Shah et al., 2009).
Mutations in various genes underlie PD, and one of the autosomal recessive candidate genes is
Here, we use the fly as a model system to investigate sugar sensitivity and associative taste memory. Taste perception in flies is mediated by taste organs including the labellum, pharynx, leg, margin of wings and ovipositor (Lee and Poudel, 2014). These organs contain gustatory receptors that sense sweet and bitter tastants in the sensilla. Each sensillum has 2–4 gustatory receptor neurons (GRNs). We performed a binary choice feeding assay as well as tip recordings to evaluate any differences between control and PD model flies. We found that the
The memory impairment of
The anti-microbial and anti-oxidative properties of omija have been described in many literatures (Jung et al., 2000). This anti-oxidative property of omija and the anti-oxidative role of
Caffeine, sucrose and sulforhodamine B were purchased from Sigma-Aldrich Company (USA). Brilliant blue FCF was obtained from Wako Pure Chemical Industry, Ltd (Japan). Omija extract (PB2892.3) was purchased from the Korea Research Institute of Bioscience and Biotechnology (Korea). The leaves and flowers of omija were extracted using 99.99% methyl alcohol (HPLC grade).
We performed a two-way choice assay as previously described (Poudel et al., 2017). Briefly, 50–70 adult flies (3–6 days old) were starved for 18 h in a humidified chamber. We then prepared two types of test mixtures, with one mixture always containing 2 mM sucrose, and the other mixture containing 2, 4, 6, 8, or 10 mM sucrose. We mixed the two test mixtures with two dyes: one with blue (brilliant blue FCF, 0.125 mg/ml) and the other with red (sulforhodamine B, 0.2 mg/ml). The two test mixtures were distributed in a 72-well microtiter dish in an alternated fashion, then the starved flies were introduced into the dish. The fly-containing microtiter dishes were kept in a dark humidified chamber and the flies were allowed to feed for 90 min. Flies were sacrificed by freezing and stored at −20°C until we analyzed the color of their abdomens using a microscope, which allowed us to determine which food they ate. We counted the number of flies that had abdomens that were blue (NB), red (NR), or purple (NP). The preference index (P.I.) was calculated according to the following equation: (NB-NR)/(NR+NB+NP) or (NR-NB)/(NR+NB+NP), depending on the dye/tastant combinations. P.I.s of −1.0 and 1.0 indicated a complete preference for 2 mM sucrose alone and the other concentration of sucrose, respectively. A P.I. of 0.0 indicated no bias between the two food alternatives.
We performed tip recordings as previously described (Poudel et al., 2017), using different concentrations of sucrose. We first immobilized 3–7-day-old flies by placing them on ice. We then inserted a reference glass electrode filled with Ringer’s solution into the thorax of the fly, and extended the electrode toward the proboscis. We stimulated the sensilla with tastants dissolved in the buffer solution of the recording pipette (10–20 μm tip diameter). We used 30 mM tricholine citrate (TCC) as the electrolyte for recording. We also tested 10 mM caffeine with 1 mM KCl from S-type sensilla. The recording electrode was connected to a preamplifier (TastePROBE, Syntech, Germany), and we collected and amplified the signals 10× using a signal connection interface box (Syntech) in conjunction with a 100–3000 Hz band-pass filter. Recordings of action potentials were made using a 12-kHz sampling rate and analyzed using Autospike 3.1 software (Syntech). Spike sorting was used as an indicator of the spike amplitudes that correspond to the action potentials of sucrose-sensitive neurons not to include relatively small amplitudes of water spikes.
Taste memory assay was performed by modifying previous methods (Masek et al., 2015). Three to four day old adult flies were starved for 12–18 h. The flies were fixed onto a glass slide using nail polish and ice was used to anesthetize flies while fixing. Between 10–15 flies were used per each assay. The flies were kept at 25°C in a 60% humidified incubator to recover for at least 2 h. The experiment was divided into three different phases. The first phase is the pretest in which the flies were presented with 500 mM sucrose stimuli to the leg. Flies that showed positive proboscis extension to this present were used in the next phases. The next phase was the training phase where the flies were presented with 500 mM sucrose stimuli at the leg while simultaneously being punished with presentation of an aversive taste, i.e. by giving 50 mM caffeine stimuli at the labellum. Training was repeated 15 times for each fly. Data for the training binned into three five-trial. After training was completed, the flies were given 500 mM sucrose stimuli at the leg at different time intervals (0, 5, 15, 30, 45 and 60 min), and the proboscis extension response was noted. Memory tests were also performed for both control and
Feeding quantification was performed as previously described (Wong et al., 2009) for both control and
All error bars represent standard error of the means (SEMs). Single factor analysis of variance (ANOVA) with Scheffe’s analysis as a
Deficits in peripheral sensations, such as vision (Almer et al., 2012), pain (Seiss et al., 2003), odor (Ansari and Johnson, 1975), and taste (Shah et al., 2009), have been described in PD patients. We chose
Defects in learning and memory are an important feature of neurodegenerative disease. Neurotransmitters like dopamine and serotonin play an important role in learning and memory. Dopamine functions in taste memory (Masek et al., 2015), whereas serotonin is required for place memory (Sitaraman et al., 2008). PD is characterized by the loss of dopaminergic neurons (Damier et al., 1999), which lends the suggestion that PD model flies may have impairments in taste memory. In
Since dopamine functions in taste memories, we examined whether
In our aging society, memory loss is increasingly becoming a major health problem, with few effective solutions. The associative taste memory assay described above could be a useful tool for screening dietary health supplements for improving memory. We performed a small scale screen of about ten natural compounds to identify supplements that may be useful for improving memory. From this screen, we discovered that omija, a very popular berry in Korea normally taken as a refreshing beverage or in the form of omija tea, and has been published to have many medicinal uses (Jung et al., 2000; Kim et al., 2009) may be useful in improving associative memory. To test this, we fed control and
The addition of omija to the fly food could impart a novel taste quality and cause flies to restrict their food intake. Caloric restriction could artificially affect the results of the taste memory task; therefore, to ensure that the alterations in associative memory seen with omija supplementation are not due to differences in food intake, we quantified the amount of food ingested at different time intervals and examined any difference in intake between normal cornmeal and omija-supplemented food (Fig. 4A). We found no significant difference in ingestion of the two foods, with the exception that
Our present results suggest that loss of function mutations in the
Mol. Cells 2018; 41(7): 646-652
Published online July 31, 2018 https://doi.org/10.14348/molcells.2018.0014
Copyright © The Korean Society for Molecular and Cellular Biology.
Seeta Poudel, and Youngseok Lee*
Department of Bio and Fermentation Convergence Technology, BK21 PLUS project, Kookmin University, Seoul 02707, Korea
Correspondence to:*Correspondence: ylee@kookmin.ac.kr
Neurodegeneration can result in memory loss in the central nervous system (CNS) and impairment of taste and smell in the peripheral nervous system (PNS). The neurodegeneration seen in Parkinson’s disease (PD) is characterized by functional loss of dopaminergic neurons. Recent studies have also found a role for dopaminergic neurons in regulating taste memory rewards in insects. To investigate how taste memories and sugar sensitivity can be affected in PD, we utilized the
Keywords:
Parkinson’s disease (PD) is a neurodegenerative condition that is characterized by the loss of motor function. The reduction or loss of dopaminergic (DA) neurons from substantia nigra of the brain is a hallmark of PD (Damier et al., 1999).
PD also causes defects in odor perception (Ansari and Johnson, 1975), and this odor impairment can be used as a diagnostic feature (Tissinhg et al., 2011). Researchers also considered whether PD patients have impairments in taste perception. While a 2005 study did not find a significant difference in the taste sensitivity between control and PD patients groups (Sienkiewicz et al., 2005), a later study in 2009 of 25 non-demented PD patients and 74 control patients found a direct correlation between taste impairment and PD (Shah et al., 2009).
Mutations in various genes underlie PD, and one of the autosomal recessive candidate genes is
Here, we use the fly as a model system to investigate sugar sensitivity and associative taste memory. Taste perception in flies is mediated by taste organs including the labellum, pharynx, leg, margin of wings and ovipositor (Lee and Poudel, 2014). These organs contain gustatory receptors that sense sweet and bitter tastants in the sensilla. Each sensillum has 2–4 gustatory receptor neurons (GRNs). We performed a binary choice feeding assay as well as tip recordings to evaluate any differences between control and PD model flies. We found that the
The memory impairment of
The anti-microbial and anti-oxidative properties of omija have been described in many literatures (Jung et al., 2000). This anti-oxidative property of omija and the anti-oxidative role of
Caffeine, sucrose and sulforhodamine B were purchased from Sigma-Aldrich Company (USA). Brilliant blue FCF was obtained from Wako Pure Chemical Industry, Ltd (Japan). Omija extract (PB2892.3) was purchased from the Korea Research Institute of Bioscience and Biotechnology (Korea). The leaves and flowers of omija were extracted using 99.99% methyl alcohol (HPLC grade).
We performed a two-way choice assay as previously described (Poudel et al., 2017). Briefly, 50–70 adult flies (3–6 days old) were starved for 18 h in a humidified chamber. We then prepared two types of test mixtures, with one mixture always containing 2 mM sucrose, and the other mixture containing 2, 4, 6, 8, or 10 mM sucrose. We mixed the two test mixtures with two dyes: one with blue (brilliant blue FCF, 0.125 mg/ml) and the other with red (sulforhodamine B, 0.2 mg/ml). The two test mixtures were distributed in a 72-well microtiter dish in an alternated fashion, then the starved flies were introduced into the dish. The fly-containing microtiter dishes were kept in a dark humidified chamber and the flies were allowed to feed for 90 min. Flies were sacrificed by freezing and stored at −20°C until we analyzed the color of their abdomens using a microscope, which allowed us to determine which food they ate. We counted the number of flies that had abdomens that were blue (NB), red (NR), or purple (NP). The preference index (P.I.) was calculated according to the following equation: (NB-NR)/(NR+NB+NP) or (NR-NB)/(NR+NB+NP), depending on the dye/tastant combinations. P.I.s of −1.0 and 1.0 indicated a complete preference for 2 mM sucrose alone and the other concentration of sucrose, respectively. A P.I. of 0.0 indicated no bias between the two food alternatives.
We performed tip recordings as previously described (Poudel et al., 2017), using different concentrations of sucrose. We first immobilized 3–7-day-old flies by placing them on ice. We then inserted a reference glass electrode filled with Ringer’s solution into the thorax of the fly, and extended the electrode toward the proboscis. We stimulated the sensilla with tastants dissolved in the buffer solution of the recording pipette (10–20 μm tip diameter). We used 30 mM tricholine citrate (TCC) as the electrolyte for recording. We also tested 10 mM caffeine with 1 mM KCl from S-type sensilla. The recording electrode was connected to a preamplifier (TastePROBE, Syntech, Germany), and we collected and amplified the signals 10× using a signal connection interface box (Syntech) in conjunction with a 100–3000 Hz band-pass filter. Recordings of action potentials were made using a 12-kHz sampling rate and analyzed using Autospike 3.1 software (Syntech). Spike sorting was used as an indicator of the spike amplitudes that correspond to the action potentials of sucrose-sensitive neurons not to include relatively small amplitudes of water spikes.
Taste memory assay was performed by modifying previous methods (Masek et al., 2015). Three to four day old adult flies were starved for 12–18 h. The flies were fixed onto a glass slide using nail polish and ice was used to anesthetize flies while fixing. Between 10–15 flies were used per each assay. The flies were kept at 25°C in a 60% humidified incubator to recover for at least 2 h. The experiment was divided into three different phases. The first phase is the pretest in which the flies were presented with 500 mM sucrose stimuli to the leg. Flies that showed positive proboscis extension to this present were used in the next phases. The next phase was the training phase where the flies were presented with 500 mM sucrose stimuli at the leg while simultaneously being punished with presentation of an aversive taste, i.e. by giving 50 mM caffeine stimuli at the labellum. Training was repeated 15 times for each fly. Data for the training binned into three five-trial. After training was completed, the flies were given 500 mM sucrose stimuli at the leg at different time intervals (0, 5, 15, 30, 45 and 60 min), and the proboscis extension response was noted. Memory tests were also performed for both control and
Feeding quantification was performed as previously described (Wong et al., 2009) for both control and
All error bars represent standard error of the means (SEMs). Single factor analysis of variance (ANOVA) with Scheffe’s analysis as a
Deficits in peripheral sensations, such as vision (Almer et al., 2012), pain (Seiss et al., 2003), odor (Ansari and Johnson, 1975), and taste (Shah et al., 2009), have been described in PD patients. We chose
Defects in learning and memory are an important feature of neurodegenerative disease. Neurotransmitters like dopamine and serotonin play an important role in learning and memory. Dopamine functions in taste memory (Masek et al., 2015), whereas serotonin is required for place memory (Sitaraman et al., 2008). PD is characterized by the loss of dopaminergic neurons (Damier et al., 1999), which lends the suggestion that PD model flies may have impairments in taste memory. In
Since dopamine functions in taste memories, we examined whether
In our aging society, memory loss is increasingly becoming a major health problem, with few effective solutions. The associative taste memory assay described above could be a useful tool for screening dietary health supplements for improving memory. We performed a small scale screen of about ten natural compounds to identify supplements that may be useful for improving memory. From this screen, we discovered that omija, a very popular berry in Korea normally taken as a refreshing beverage or in the form of omija tea, and has been published to have many medicinal uses (Jung et al., 2000; Kim et al., 2009) may be useful in improving associative memory. To test this, we fed control and
The addition of omija to the fly food could impart a novel taste quality and cause flies to restrict their food intake. Caloric restriction could artificially affect the results of the taste memory task; therefore, to ensure that the alterations in associative memory seen with omija supplementation are not due to differences in food intake, we quantified the amount of food ingested at different time intervals and examined any difference in intake between normal cornmeal and omija-supplemented food (Fig. 4A). We found no significant difference in ingestion of the two foods, with the exception that
Our present results suggest that loss of function mutations in the
Shun Uchizono, Taichi Q. Itoh, Haein Kim, Naoki Hamada, Jae Young Kwon, and Teiichi Tanimura
Mol. Cells 2017; 40(10): 731-736 https://doi.org/10.14348/molcells.2017.0016Eun Jeong Sohn, Min Jea Shin, Dae Won Kim, Eun Hee Ahn, Hyo Sang Jo, Duk-Soo Kim, Sung-Woo Cho, Kyu Hyung Han, Jinseu Park, Won Sik Eum, Hyun Sook Hwang, and Soo Young Choi
Mol. Cells 2014; 37(3): 226-233 https://doi.org/10.14348/molcells.2014.2314