Mol. Cells 2018; 41(6): 603-611
Published online June 12, 2018
https://doi.org/10.14348/molcells.2018.0120
© The Korean Society for Molecular and Cellular Biology
Correspondence to : *Correspondence: mjkang@amc.seoul.kr
Triglyceride homeostasis is a key process of normal development and is essential for the maintenance of energy metabolism. Dysregulation of this process leads to metabolic disorders such as obesity and hyperlipidemia. Here, we report a novel function of the
Keywords desaturase-1,
Flightless-I (fliI) is an actin-binding protein and performs important functions in early embryogenesis in
The maintenance of fat content is central to normal development and essential for energy metabolism (Ducharme and Bickel, 2008).
As described above, fliI primarily participates in cytoskeletal regulation and cell migration as a member of the actin-remodeling protein family (Davy et al., 2000; 2001). In addition to regulating cytoskeletal function, a recent study has revealed that fliI regulates gene transcription by interacting with nuclear receptors, such as peroxisome proliferator-activated receptor γ (PPARγ), by modulating the expression of lipogenic enzymes (Choi et al., 2015). These findings propelled us to determine whether fliI plays a role in lipid metabolism. Here, we report that
The coding sequence of flightless-1 was obtained by RT-PCR from
This procedure was carried out using the Triglyceride Reagent (Thermo Electron Corp., TR22421). A total of five to ten female flies were homogenized in 200 μl of PBST (PBS with 0.1% Tween 20), and triglyceride levels were measured as previously described (Birse et al., 2010). Triglyceride amounts were normalized to total protein levels. To measure triglyceride levels in the fat body and intestine, we dissected the flies in cold PBS and collected the fat body and intestine, being careful to avoid contamination with other tissues. The collected tissues were homogenized in PBST.
For the staining of neutral lipids, dissected tissues were fixed with 4% formaldehyde in PBS for 20 min and washed in PBS with 0.1% Triton X-100 (PBST2). The tissues were then stained with PBST2 containing bodipy 493/503 (1:2 000; Life Technologies). For Nile red staining, whole flies were fixed in 4% paraformaldehyde in PBST2 for 3 h at room temperature. The flies were washed three times in PBS for 5 min. Abdomens were carefully dissected in PBS. The dissected abdomens were incubated for 30 min in a Nile red staining solution (1 mg/ml in dimethyl sulfoxide, 1:1 000 in PBST2). The abdomens were washed three times in PBS for 5 min and then mounted on a slide glass with 50% glycerol in PBS.
Twenty female flies (7 days old) of each genotype were transferred to vials containing 1% agar in PBS. The flies were transferred to fresh food every 12 h and maintained at 25°C; deaths were recorded at those time points.
Twenty female flies (7 days old) were starved for 24 h in vials containing 1% agar in PBS or maintained on standard fly food. Next, they were transferred to vials containing 1% agar, 5% sucrose, and 2.5% blue food dye (Erioglaucine Disodium Salt, Sigma, cat. #861146). After 15 min of feeding, 10 flies were immediately frozen, homogenized in 300 μl of PBS, and centrifuged for 25 min at 13 200 rpm (Eppendorf Centrifuge 5415R). The absorbance of the supernatant was measured at 625 nm on a spectrophotometer (Tecan).
Total RNA from five female flies was isolated using the TRIzol Reagent (Invitrogen, USA), and 200 ng of RNA was transcribed with the ReverTra Ace qPCR RT Kit (Toyobo Co., Japan). Quantitative PCR amplification was run for 40 cycles by means of the TOPreal™ qPCR 2X PreMIX (SYBR Green with high ROX) and a LightCycler® 480 Real-Time PCR System.
3T3-L1 cells were acquired from ATCC (USA) and cultured in Dulbecco’s modified Eagle’s medium with 10% of fetal bovine serum. Cells were transfected with an empty vector or a vector carrying murine FLII, and stable transfectants were generated by neomycin (G418) selection. Total RNA was extracted from confluent preadipocytes for quantitative RT-PCR.
Each experiment was repeated at least three times, and the data are presented as mean ± SE. Significance testing was based on Student’s
coenzyme A (CoA), DNA-binding domain (DBD), leucinerich repeat (LRR), PBS with 0.1% Tween 20 (PBST), PBS with 0.1% Triton X-100 (PBST2), RNA interference (RNAi)
To assess the physiological role of fliI in lipid metabolism, we used already characterized
To test whether the increased triglyceride amount in
To assess the metabolic roles of fliI, we examined the ability of mutants to survive long periods of complete starvation. Seven-day-old female flies were reared on a starvation medium (1% agar in PBS), and the number of surviving flies was recorded every 12 h. Under the starvation conditions,
Stearoyl-CoA desaturases (SCDs) are key enzymes in fatty acid biogenesis. They catalyze desaturation of saturated long-chain fatty acids, preferring palmitoyl-CoA and stearoyl-CoA as substrates and converting them to palmitoleoyl-CoA and oleoyl-CoA, respectively. The resulting monounsaturated fatty acids, palmitoleoyl-CoA and oleoyl-CoA, are major components of triacylglycerol, cholesterol esters, and phospholipids (Enoch et al., 1976; Sampath and Ntambi, 2011). In addition, SCDs contribute to anomalous lipid metabolism and the progression of obesity (Hulver et al., 2005; Jiang et al., 2005). Given that FLII is involved in the expression of SCD1 in mammalian cells (Wu et al., 2013), we determined whether they are the major cause of the obesity-like phenotype in
Next, we tested whether the increase in triglyceride amounts in
Here, we demonstrate that
Nevertheless, it is unclear how fliI suppresses the expression of
Alternatively, the regulation of
Recent research indicates that cytoskeletal protein FLII is involved in diabetic wound healing (Ruzehaji et al., 2014). Consistent with another observation (Kopecki et al., 2009), attenuation of FLII expression by a genetic knockdown or by a FLII-neutralizing antibody improves wound healing and new vessel formation in vivo. In that study, they determined the FLII protein expression in nondiabetic and diabetic
In summary, our results show that
Mol. Cells 2018; 41(6): 603-611
Published online June 30, 2018 https://doi.org/10.14348/molcells.2018.0120
Copyright © The Korean Society for Molecular and Cellular Biology.
Jung-Eun Park1, Eun Ji Lee1, Jung Kwan Kim2, Youngsup Song1, Jang Hyun Choi2, and Min-Ji Kang1,*
1Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea, 2Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea
Correspondence to:*Correspondence: mjkang@amc.seoul.kr
Triglyceride homeostasis is a key process of normal development and is essential for the maintenance of energy metabolism. Dysregulation of this process leads to metabolic disorders such as obesity and hyperlipidemia. Here, we report a novel function of the
Keywords: desaturase-1,
Flightless-I (fliI) is an actin-binding protein and performs important functions in early embryogenesis in
The maintenance of fat content is central to normal development and essential for energy metabolism (Ducharme and Bickel, 2008).
As described above, fliI primarily participates in cytoskeletal regulation and cell migration as a member of the actin-remodeling protein family (Davy et al., 2000; 2001). In addition to regulating cytoskeletal function, a recent study has revealed that fliI regulates gene transcription by interacting with nuclear receptors, such as peroxisome proliferator-activated receptor γ (PPARγ), by modulating the expression of lipogenic enzymes (Choi et al., 2015). These findings propelled us to determine whether fliI plays a role in lipid metabolism. Here, we report that
The coding sequence of flightless-1 was obtained by RT-PCR from
This procedure was carried out using the Triglyceride Reagent (Thermo Electron Corp., TR22421). A total of five to ten female flies were homogenized in 200 μl of PBST (PBS with 0.1% Tween 20), and triglyceride levels were measured as previously described (Birse et al., 2010). Triglyceride amounts were normalized to total protein levels. To measure triglyceride levels in the fat body and intestine, we dissected the flies in cold PBS and collected the fat body and intestine, being careful to avoid contamination with other tissues. The collected tissues were homogenized in PBST.
For the staining of neutral lipids, dissected tissues were fixed with 4% formaldehyde in PBS for 20 min and washed in PBS with 0.1% Triton X-100 (PBST2). The tissues were then stained with PBST2 containing bodipy 493/503 (1:2 000; Life Technologies). For Nile red staining, whole flies were fixed in 4% paraformaldehyde in PBST2 for 3 h at room temperature. The flies were washed three times in PBS for 5 min. Abdomens were carefully dissected in PBS. The dissected abdomens were incubated for 30 min in a Nile red staining solution (1 mg/ml in dimethyl sulfoxide, 1:1 000 in PBST2). The abdomens were washed three times in PBS for 5 min and then mounted on a slide glass with 50% glycerol in PBS.
Twenty female flies (7 days old) of each genotype were transferred to vials containing 1% agar in PBS. The flies were transferred to fresh food every 12 h and maintained at 25°C; deaths were recorded at those time points.
Twenty female flies (7 days old) were starved for 24 h in vials containing 1% agar in PBS or maintained on standard fly food. Next, they were transferred to vials containing 1% agar, 5% sucrose, and 2.5% blue food dye (Erioglaucine Disodium Salt, Sigma, cat. #861146). After 15 min of feeding, 10 flies were immediately frozen, homogenized in 300 μl of PBS, and centrifuged for 25 min at 13 200 rpm (Eppendorf Centrifuge 5415R). The absorbance of the supernatant was measured at 625 nm on a spectrophotometer (Tecan).
Total RNA from five female flies was isolated using the TRIzol Reagent (Invitrogen, USA), and 200 ng of RNA was transcribed with the ReverTra Ace qPCR RT Kit (Toyobo Co., Japan). Quantitative PCR amplification was run for 40 cycles by means of the TOPreal™ qPCR 2X PreMIX (SYBR Green with high ROX) and a LightCycler® 480 Real-Time PCR System.
3T3-L1 cells were acquired from ATCC (USA) and cultured in Dulbecco’s modified Eagle’s medium with 10% of fetal bovine serum. Cells were transfected with an empty vector or a vector carrying murine FLII, and stable transfectants were generated by neomycin (G418) selection. Total RNA was extracted from confluent preadipocytes for quantitative RT-PCR.
Each experiment was repeated at least three times, and the data are presented as mean ± SE. Significance testing was based on Student’s
coenzyme A (CoA), DNA-binding domain (DBD), leucinerich repeat (LRR), PBS with 0.1% Tween 20 (PBST), PBS with 0.1% Triton X-100 (PBST2), RNA interference (RNAi)
To assess the physiological role of fliI in lipid metabolism, we used already characterized
To test whether the increased triglyceride amount in
To assess the metabolic roles of fliI, we examined the ability of mutants to survive long periods of complete starvation. Seven-day-old female flies were reared on a starvation medium (1% agar in PBS), and the number of surviving flies was recorded every 12 h. Under the starvation conditions,
Stearoyl-CoA desaturases (SCDs) are key enzymes in fatty acid biogenesis. They catalyze desaturation of saturated long-chain fatty acids, preferring palmitoyl-CoA and stearoyl-CoA as substrates and converting them to palmitoleoyl-CoA and oleoyl-CoA, respectively. The resulting monounsaturated fatty acids, palmitoleoyl-CoA and oleoyl-CoA, are major components of triacylglycerol, cholesterol esters, and phospholipids (Enoch et al., 1976; Sampath and Ntambi, 2011). In addition, SCDs contribute to anomalous lipid metabolism and the progression of obesity (Hulver et al., 2005; Jiang et al., 2005). Given that FLII is involved in the expression of SCD1 in mammalian cells (Wu et al., 2013), we determined whether they are the major cause of the obesity-like phenotype in
Next, we tested whether the increase in triglyceride amounts in
Here, we demonstrate that
Nevertheless, it is unclear how fliI suppresses the expression of
Alternatively, the regulation of
Recent research indicates that cytoskeletal protein FLII is involved in diabetic wound healing (Ruzehaji et al., 2014). Consistent with another observation (Kopecki et al., 2009), attenuation of FLII expression by a genetic knockdown or by a FLII-neutralizing antibody improves wound healing and new vessel formation in vivo. In that study, they determined the FLII protein expression in nondiabetic and diabetic
In summary, our results show that
Heeju Ryu, Jiyeon Kim, Daehong Kim, Jeong-Eun Lee, and Yeonseok Chung
Mol. Cells 2019; 42(11): 747-754 https://doi.org/10.14348/molcells.2019.0196Hyojung Lee, Hyo Jin Lee, Ji Yeon Kim, and Oran Kwon
Mol. Cells 2015; 38(12): 1044-1053 https://doi.org/10.14348/molcells.2015.0107