TOP

Minireview

Split Viewer

Mol. Cells 2006; 22(1): 1-7

Published online January 1, 1970

© The Korean Society for Molecular and Cellular Biology

Regulation of NFAT Activation: a Potential Therapeutic Target for Immunosuppression

Mina Lee, Jungchan Park

Abstract

The NFAT family of transcription factors plays pivotal roles in the development and function of the immune system. Their activation process is tightly regulated by calcium-dependent phosphatase calcineurin and has been a target of the immunosuppressive drugs cyclosporin A and FK-506. Although the clinical use of these drugs has dramatically increased the success of organ transplantation, their therapeutic use is limited by severe side effects. Recent studies for the calcineurin/NFAT signaling pathway have identified a number of cellular proteins that inhibit calcineurin function. Specific peptide sequences that interfere with the interaction between calcineurin and NFAT have also been characterized. Moreover, diverse approaches to identify small organic molecules that modulate NFAT function have been performed. This review focuses on the recent advances in our understanding of the inhibitory modulation of NFAT function, which may open up the additional avenues for immunosuppressive therapy.

Keywords Calcineurin; Immunosuppression; Inhibitor; NFAT

Article

Minireview

Mol. Cells 2006; 22(1): 1-7

Published online August 31, 2006

Copyright © The Korean Society for Molecular and Cellular Biology.

Regulation of NFAT Activation: a Potential Therapeutic Target for Immunosuppression

Mina Lee, Jungchan Park

Abstract

The NFAT family of transcription factors plays pivotal roles in the development and function of the immune system. Their activation process is tightly regulated by calcium-dependent phosphatase calcineurin and has been a target of the immunosuppressive drugs cyclosporin A and FK-506. Although the clinical use of these drugs has dramatically increased the success of organ transplantation, their therapeutic use is limited by severe side effects. Recent studies for the calcineurin/NFAT signaling pathway have identified a number of cellular proteins that inhibit calcineurin function. Specific peptide sequences that interfere with the interaction between calcineurin and NFAT have also been characterized. Moreover, diverse approaches to identify small organic molecules that modulate NFAT function have been performed. This review focuses on the recent advances in our understanding of the inhibitory modulation of NFAT function, which may open up the additional avenues for immunosuppressive therapy.

Keywords: Calcineurin, Immunosuppression, Inhibitor, NFAT

Mol. Cells
Nov 30, 2023 Vol.46 No.11, pp. 655~725
COVER PICTURE
Kim et al. (pp. 710-724) demonstrated that a pathogen-derived Ralstonia pseudosolanacearum type III effector RipL delays flowering time and enhances susceptibility to bacterial infection in Arabidopsis thaliana. Shown is the RipL-expressing Arabidopsis plant, which displays general dampening of the transcriptional program during pathogen infection, grown in long-day conditions.

Share this article on

  • line

Molecules and Cells

eISSN 0219-1032
qr-code Download