TOP

Research Article

Split Viewer

Mol. Cells 2006; 22(3): 262-268

Published online January 1, 1970

© The Korean Society for Molecular and Cellular Biology

Spatio-temporal Expression and Regulation of Dermatopontin in the Early Pregnant Mouse Uterus

Hyun Sook Kim, Yong-Pil Cheon

Abstract

During endometrial differentiation the extracellular matrix (ECM) changes dramatically to prepare for implantation of the embryo. However, the genes regulating the ECM build-up in the uterine endometrium during early pregnancy are not well known. Using the PCR-select cDNA subtraction method, dermatopontin was identified in the uterus of a pregnant mouse on day 4 of gestation. Dermatopontin mRNA increased dramatically on day 3, and was at its highest level at the time of implantation. Administration of RU 486 significantly inhibited mRNA expression by day 4 of gestation, but ICI 182,780 did not. Progesterone markedly induced dermatopontin expression in ovariectomized uteri within 4 h of administration, whereas estrogen had little effect. In silico analysis revealed progesterone receptor binding sites in the dermatopontin promoter region. Decidualization did not induce expression of dermatopontin; instead dermatopontin mRNA became strongly localized at the interimplantation site. In situ hybridization revealed that expression gradually decreased in the luminal epithelial cells as pregnancy progressed, whereas it increased in the stromal cells. The pattern of localization and the changes of intensity of dermatopontin mRNA coincided with those of collagen. Collectively, these results strongly suggest that dermatopontin expression is steroid-dependent. They also suggest that, at the time of implantation, dermatopontin expression is primarily regulated spatio-temporally by progesterone via progesterone receptors, and is modulated by the decidual response during implantation. Dermatopontin may be one of the regulators used to remodel the uterine ECM for pregnancy.

Keywords Dermatopontin; Extracellular Matrix; Implantation; Progesterone

Article

Research Article

Mol. Cells 2006; 22(3): 262-268

Published online December 31, 2006

Copyright © The Korean Society for Molecular and Cellular Biology.

Spatio-temporal Expression and Regulation of Dermatopontin in the Early Pregnant Mouse Uterus

Hyun Sook Kim, Yong-Pil Cheon

Abstract

During endometrial differentiation the extracellular matrix (ECM) changes dramatically to prepare for implantation of the embryo. However, the genes regulating the ECM build-up in the uterine endometrium during early pregnancy are not well known. Using the PCR-select cDNA subtraction method, dermatopontin was identified in the uterus of a pregnant mouse on day 4 of gestation. Dermatopontin mRNA increased dramatically on day 3, and was at its highest level at the time of implantation. Administration of RU 486 significantly inhibited mRNA expression by day 4 of gestation, but ICI 182,780 did not. Progesterone markedly induced dermatopontin expression in ovariectomized uteri within 4 h of administration, whereas estrogen had little effect. In silico analysis revealed progesterone receptor binding sites in the dermatopontin promoter region. Decidualization did not induce expression of dermatopontin; instead dermatopontin mRNA became strongly localized at the interimplantation site. In situ hybridization revealed that expression gradually decreased in the luminal epithelial cells as pregnancy progressed, whereas it increased in the stromal cells. The pattern of localization and the changes of intensity of dermatopontin mRNA coincided with those of collagen. Collectively, these results strongly suggest that dermatopontin expression is steroid-dependent. They also suggest that, at the time of implantation, dermatopontin expression is primarily regulated spatio-temporally by progesterone via progesterone receptors, and is modulated by the decidual response during implantation. Dermatopontin may be one of the regulators used to remodel the uterine ECM for pregnancy.

Keywords: Dermatopontin, Extracellular Matrix, Implantation, Progesterone

Mol. Cells
Nov 30, 2023 Vol.46 No.11, pp. 655~725
COVER PICTURE
Kim et al. (pp. 710-724) demonstrated that a pathogen-derived Ralstonia pseudosolanacearum type III effector RipL delays flowering time and enhances susceptibility to bacterial infection in Arabidopsis thaliana. Shown is the RipL-expressing Arabidopsis plant, which displays general dampening of the transcriptional program during pathogen infection, grown in long-day conditions.

Share this article on

  • line

Molecules and Cells

eISSN 0219-1032
qr-code Download