TOP

Minireview

Split Viewer

Mol. Cells 2007; 23(3): 259-271

Published online January 1, 1970

© The Korean Society for Molecular and Cellular Biology

A Synaptic Model for Pain: Long-Term Potentiation in the Anterior Cingulate Cortex

Min Zhuo

Abstract

Investigation of molecular and cellular mechanisms of synaptic plasticity is the major focus of many neuroscientists. There are two major reasons for searching new genes and molecules contributing to central plasticity: first, it provides basic neural mechanism for learning and memory, a key function of the brain; second, it provides new targets for treating brain-related disease. Long-term potentiation (LTP), mostly intensely studies in the hippocampus and amygdala, is proposed to be a cellular model for learning and memory. Although it remains difficult to understand the roles of LTP in hippocampus-related memory, a role of LTP in fear, a simplified form of memory, has been established. Here, I will review recent cellular studies of LTP in the anterior cingulate cortex (ACC) and then compare studies in vivo and in vitro LTP by genetic/ pharmacological approaches. I propose that ACC LTP may serve as a cellular model for studying central sensitization that related to chronic pain, as well as pain-related cognitive emotional disorders. Understanding signaling pathways related to ACC LTP may help us to identify novel drug target for various mental disorders.

Keywords Adenylyl Cyclases; Anterior Cingulate Cortex; Fear Memory;, Gene Knockout; Immediate Early Genes; Long-Term Depression;, Long-Term Potentiation; Mice; Persistent Pain; Synaptic Plasticity.

Article

Minireview

Mol. Cells 2007; 23(3): 259-271

Published online June 30, 2007

Copyright © The Korean Society for Molecular and Cellular Biology.

A Synaptic Model for Pain: Long-Term Potentiation in the Anterior Cingulate Cortex

Min Zhuo

Abstract

Investigation of molecular and cellular mechanisms of synaptic plasticity is the major focus of many neuroscientists. There are two major reasons for searching new genes and molecules contributing to central plasticity: first, it provides basic neural mechanism for learning and memory, a key function of the brain; second, it provides new targets for treating brain-related disease. Long-term potentiation (LTP), mostly intensely studies in the hippocampus and amygdala, is proposed to be a cellular model for learning and memory. Although it remains difficult to understand the roles of LTP in hippocampus-related memory, a role of LTP in fear, a simplified form of memory, has been established. Here, I will review recent cellular studies of LTP in the anterior cingulate cortex (ACC) and then compare studies in vivo and in vitro LTP by genetic/ pharmacological approaches. I propose that ACC LTP may serve as a cellular model for studying central sensitization that related to chronic pain, as well as pain-related cognitive emotional disorders. Understanding signaling pathways related to ACC LTP may help us to identify novel drug target for various mental disorders.

Keywords: Adenylyl Cyclases, Anterior Cingulate Cortex, Fear Memory,, Gene Knockout, Immediate Early Genes, Long-Term Depression,, Long-Term Potentiation, Mice, Persistent Pain, Synaptic Plasticity.

Mol. Cells
May 31, 2023 Vol.46 No.5, pp. 259~328
COVER PICTURE
The alpha-helices in the lamin filaments are depicted as coils, with different subdomains distinguished by various colors. Coil 1a is represented by magenta, coil 1b by yellow, L2 by green, coil 2a by white, coil 2b by brown, stutter by cyan, coil 2c by dark blue, and the lamin Ig-like domain by grey. In the background, cells are displayed, with the cytosol depicted in green and the nucleus in blue (Ahn et al., pp. 309-318).

Share this article on

  • line
  • mail

Molecules and Cells

eISSN 0219-1032
qr-code Download