Top

Minireview

Split Viewer

Mol. Cells 2007; 24(1): 1-8

Published online August 31, 2007

© The Korean Society for Molecular and Cellular Biology

Development of Natural Killer Cells from Hematopoietic Stem Cells

Suk Ran Yoon, Jin Woong Chung and Inpyo Choi

Abstract

Natural killer (NK) cells play a crucial role in innate immune system and tumor surveillance. NK cells are derived from CD34+hematopoietic stem cells and undergo differentiation via precursor NK cells in bone marrow (BM) through sequential acquisition of functional surface receptors. During differentiation of NK cells, many factors are involved including cytokines, membrane factors and transcription factors as well as microenvironment of BM. NK cells express their own repertoire of receptors including activating and inhibitory receptors that bind to major histocompatibility complex (MHC) class I or class I-related molecules. The balance between activating and inhibitory receptors determines the function of NK cells to kill targets. Binding of NK cell inhibitory receptors to their MHC class I-ligand renders the target cells to be protected from NK cell-mediated cytotoxicity. Thus, NK cells are able to discriminate self from non-self through MHC class I-binding inhibitory receptor. Using intrinsic properties of NK cells, NK cells are emerging to apply as therapeutic agents against many types of cancers. Recently, NK cell alloactivity has also been exploited in killer cell immunoglobulin-like receptor mismatched haploidentical stem cell transplantation to reduce the rate of relapse and graft versus host disease. In this review, we discuss the basic mechanisms of NK cell differentiation, diversity of NK cell receptors, and clinical applications of NK cells for anti-cancer immunotherapy.

Keywords ematopoietic Stem Cells; Natural Killer Cell Differentiation; NK Cell Therapy; NK Receptor Repertoire.

Article

Minireview

Mol. Cells 2007; 24(1): 1-8

Published online August 31, 2007

Copyright © The Korean Society for Molecular and Cellular Biology.

Development of Natural Killer Cells from Hematopoietic Stem Cells

Suk Ran Yoon, Jin Woong Chung and Inpyo Choi

Abstract

Natural killer (NK) cells play a crucial role in innate immune system and tumor surveillance. NK cells are derived from CD34+hematopoietic stem cells and undergo differentiation via precursor NK cells in bone marrow (BM) through sequential acquisition of functional surface receptors. During differentiation of NK cells, many factors are involved including cytokines, membrane factors and transcription factors as well as microenvironment of BM. NK cells express their own repertoire of receptors including activating and inhibitory receptors that bind to major histocompatibility complex (MHC) class I or class I-related molecules. The balance between activating and inhibitory receptors determines the function of NK cells to kill targets. Binding of NK cell inhibitory receptors to their MHC class I-ligand renders the target cells to be protected from NK cell-mediated cytotoxicity. Thus, NK cells are able to discriminate self from non-self through MHC class I-binding inhibitory receptor. Using intrinsic properties of NK cells, NK cells are emerging to apply as therapeutic agents against many types of cancers. Recently, NK cell alloactivity has also been exploited in killer cell immunoglobulin-like receptor mismatched haploidentical stem cell transplantation to reduce the rate of relapse and graft versus host disease. In this review, we discuss the basic mechanisms of NK cell differentiation, diversity of NK cell receptors, and clinical applications of NK cells for anti-cancer immunotherapy.

Keywords: ematopoietic Stem Cells, Natural Killer Cell Differentiation, NK Cell Therapy, NK Receptor Repertoire.

Mol. Cells
Sep 30, 2022 Vol.45 No.9, pp. 603~672
COVER PICTURE
The Target of Rapamycin Complex (TORC) is a central regulatory hub in eukaryotes, which is well conserved in diverse plant species, including tomato (Solanum lycopersicum). Inhibition of TORC genes (SlTOR, SlLST8, and SlRAPTOR) by VIGS (virus-induced gene silencing) results in early fruit ripening in tomato. The red/ orange tomatoes are early-ripened TORC-silenced fruits, while the green tomato is a control fruit. Top, left, control fruit (TRV2-myc); top, right, TRV2-SlLST8; bottom, left, TRV2-SlTOR; bottom, right, TRV2-SlRAPTOR(Choi et al., pp. 660-672).

Share this article on

  • line
  • mail

Molecules and Cells

eISSN 0219-1032
qr-code Download