Mol. Cells 2013; 36(2): 138-144
Published online July 8, 2013
https://doi.org/10.1007/s10059-013-0096-8
© The Korean Society for Molecular and Cellular Biology
Although cancer stem cells (CSCs) play a crucial role in seeding the initiation of tumor progression, they do not always possess the same potent ability as tumor metastasis. Thus, precisely how migrating CSCs occur, still remains unclear. In the present study, we first comparatively analyzed a series of prostate CSCs, which exhibited a dynamically increasing and disseminating ability in nude mice. We observed that the transcriptional activity of HIF-1α and β-catenin became gradually elevated in these stem cells and their epithelial-mesenchymal transition (EMT) characteristic altered from an epithelial type to a mesenchymal type. Next, we further used cancer-associated fibroblasts (CAFs), which were cultured from surgically resected tissues of prostate cancer (PCa) to stimulate prostate CSCs. Similar results were reconfirmed and showed that the protein levels of both HIF-1α and β-catenin were markedly improved. In addition, the EMT phenotype displayed a homogenous mesenchymal type, accompanied with increased aggressive potency in vitro. Most importantly, the aforementioned promoting effect of CAFs on prostate CSCs was completely repressed after “silencing” the activity of β-catenin by transfection of stem cells with ShRNA. Taken together, our observations suggest that prostate migrating CSCs, with a mesenchymal phenotype, could be triggered by CAFs in a HIF-1α/β-catenin-dependent signaling pathway.
Keywords cancer-associated fibroblast, epithelial-mesenchymal transition, migrating cancer stem cell, prostate cancer
Mol. Cells 2013; 36(2): 138-144
Published online August 31, 2013 https://doi.org/10.1007/s10059-013-0096-8
Copyright © The Korean Society for Molecular and Cellular Biology.
Yong Luo, Ling Lan, Yong-Guang Jiang, Jia-Hui Zhao, Ming-Chuan Li, Neng-Bao Wei, and Yun-Hua Lin
Department of Urology, Affiliated Beijing Anzhen Hospital of Capital Medical University, Beijing, People’s Republic of China, 1Department of Endocrinology, Beijing Jishuitan Hospital, The 4th Clinical Medical College of Peking University, Beijing, People’s Republic of China
Although cancer stem cells (CSCs) play a crucial role in seeding the initiation of tumor progression, they do not always possess the same potent ability as tumor metastasis. Thus, precisely how migrating CSCs occur, still remains unclear. In the present study, we first comparatively analyzed a series of prostate CSCs, which exhibited a dynamically increasing and disseminating ability in nude mice. We observed that the transcriptional activity of HIF-1α and β-catenin became gradually elevated in these stem cells and their epithelial-mesenchymal transition (EMT) characteristic altered from an epithelial type to a mesenchymal type. Next, we further used cancer-associated fibroblasts (CAFs), which were cultured from surgically resected tissues of prostate cancer (PCa) to stimulate prostate CSCs. Similar results were reconfirmed and showed that the protein levels of both HIF-1α and β-catenin were markedly improved. In addition, the EMT phenotype displayed a homogenous mesenchymal type, accompanied with increased aggressive potency in vitro. Most importantly, the aforementioned promoting effect of CAFs on prostate CSCs was completely repressed after “silencing” the activity of β-catenin by transfection of stem cells with ShRNA. Taken together, our observations suggest that prostate migrating CSCs, with a mesenchymal phenotype, could be triggered by CAFs in a HIF-1α/β-catenin-dependent signaling pathway.
Keywords: cancer-associated fibroblast, epithelial-mesenchymal transition, migrating cancer stem cell, prostate cancer
Hongli Cao, Ping Zhang, Hong Yu*, and Jianing Xi*
Mol. Cells 2022; 45(6): 376-387 https://doi.org/10.14348/molcells.2022.2221Taewan Kim, Kwanyoung Jeong, Eunji Kim, Kwanghyun Yoon, Jinmi Choi, Jae Hyeon Park, Jae-Hwan Kim, Hyung Sik Kim, Hong-Duk Youn, and Eun-Jung Cho
Mol. Cells 2022; 45(4): 202-215 https://doi.org/10.14348/molcells.2021.0206Sarah Yoon, Boram Shin, and Hyun Goo Woo
Mol. Cells 2021; 44(8): 569-579 https://doi.org/10.14348/molcells.2021.0031