Mol. Cells 2013; 36(1): 62-68
Published online May 30, 2013
https://doi.org/10.1007/s10059-013-0044-7
© The Korean Society for Molecular and Cellular Biology
There is increasing evidence suggesting that dysregulation of certain microRNAs (miRNAs) may contribute to tumor progression and metastasis. Previous studies have shown that miR-409-3p is dysregulated in some malignancies, but its role in bladder cancer is still unknown. Here, we find that miR-409-3p is down-regulated in human bladder cancer tissues and cell lines. Enforced expression of miR-409-3p in bladder cancer cells significantly reduced their migration and invasion without affecting cell viability. Bioinformatics analysis identified the pro-metastatic gene c-Met as a potential miR-409-3p target. Further studies indicated that miR-409-3p suppressed the expression of c-
Met by binding to its 3′-untranslated region. Silencing of c- Met by small interfering RNAs phenocopied the effects of miR-409-3p overexpression, whereas restoration of c-Met in bladder cancer cells bladder cancer cells overexpressing miR-409-3p, partially reversed the suppressive effects of miR-409-3p. We further showed that MMP2 and MMP9 may be downstream effector proteins of miR-409-3p. These findings indicate that miR-409-3p could be a potential tumor suppressor in bladder cancer.
Keywords bladder cancer, c-Met, metastasis, microRNA-409-3p
Mol. Cells 2013; 36(1): 62-68
Published online July 31, 2013 https://doi.org/10.1007/s10059-013-0044-7
Copyright © The Korean Society for Molecular and Cellular Biology.
Xin Xu, Hong Chen, Yiwei Lin, Zhenghui Hu, Yeqing Mao, Jian Wu, Xianglai Xu, Yi Zhu, Shiqi Li, Xiangyi Zheng, and Liping Xie
Department of Urology, First Affiliated Hospital, Zhejiang University, Qingchun Road 79, Hangzhou 310003, Zhejiang Province, China
There is increasing evidence suggesting that dysregulation of certain microRNAs (miRNAs) may contribute to tumor progression and metastasis. Previous studies have shown that miR-409-3p is dysregulated in some malignancies, but its role in bladder cancer is still unknown. Here, we find that miR-409-3p is down-regulated in human bladder cancer tissues and cell lines. Enforced expression of miR-409-3p in bladder cancer cells significantly reduced their migration and invasion without affecting cell viability. Bioinformatics analysis identified the pro-metastatic gene c-Met as a potential miR-409-3p target. Further studies indicated that miR-409-3p suppressed the expression of c-
Met by binding to its 3′-untranslated region. Silencing of c- Met by small interfering RNAs phenocopied the effects of miR-409-3p overexpression, whereas restoration of c-Met in bladder cancer cells bladder cancer cells overexpressing miR-409-3p, partially reversed the suppressive effects of miR-409-3p. We further showed that MMP2 and MMP9 may be downstream effector proteins of miR-409-3p. These findings indicate that miR-409-3p could be a potential tumor suppressor in bladder cancer.
Keywords: bladder cancer, c-Met, metastasis, microRNA-409-3p
Christopher J. Occhiuto, Jessica A. Moerland, Ana S. Leal, Kathleen A. Gallo, and Karen T. Liby
Mol. Cells 2023; 46(3): 176-186 https://doi.org/10.14348/molcells.2023.2191Min Ji Park, Eunji Jeong, Eun Ji Lee, Hyeon Ji Choi, Bo Hyun Moon, Keunsoo Kang, and Suhwan Chang
Mol. Cells 2023; 46(6): 351-359 https://doi.org/10.14348/molcells.2023.2174Cho-Won Kim, Hong Kyu Lee, Min-Woo Nam, Youngdong Choi, and Kyung-Chul Choi
Mol. Cells 2022; 45(12): 935-949 https://doi.org/10.14348/molcells.2022.0105