Mol. Cells 2013; 36(1): 7-16
Published online May 24, 2013
https://doi.org/10.1007/s10059-013-0140-8
© The Korean Society for Molecular and Cellular Biology
Autophagy is a dynamic process by which cytosolic material, including organelles, proteins, and pathogens, are sequestered into membrane vesicles called autophagosomes, and then delivered to the lysosome for degradation. By recycling cellular components, this process provides a mechanism for adaptation to starvation. The regulation of autophagy by nutrient signals involves a complex network of proteins that include mammalian target of rapamycin, the class III phosphatidylinositol-3 kinase/Beclin 1 complex, and two ubiquitin-like conjugation systems. Additionally, autophagy, which can be induced by multiple forms of chemical and physical stress, including endoplasmic reticulum stress, and hypoxia, plays an integral role in the mammalian stress response. Recent studies indicate that, in addition to bulk assimilation of cytosol, autophagy may proceed through selective pathways that target distinct cargoes to autophagosomes. The principle homeostatic functions of autophagy include the selective clearance of aggregated protein to preserve proteostasis, and the selective removal of dysfunctional mitochondria (mitophagy). Additionally, autophagy plays a central role in innate and adaptive immunity, with diverse functions such as regulation of inflammatory responses, antigen presentation, and pathogen clearance. Autophagy can preserve cellular function in a wide variety of tissue injury and disease states, however, maladaptive or pro-pathogenic outcomes have also been described. Among the many diseases where autophagy may play a role include proteopathies which involve aberrant accumulation of proteins (e.g., neurodegenerative disorders), infectious diseases, and metabolic disorders such as diabetes and metabolic syndrome. Targeting the autophagy pathway and its regulatory components may eventually lead to the development of therapeutics.
Keywords autophagy, innate immunity, metabolism, mitophagy, neurodegeneration, proteostasis
Mol. Cells 2013; 36(1): 7-16
Published online July 31, 2013 https://doi.org/10.1007/s10059-013-0140-8
Copyright © The Korean Society for Molecular and Cellular Biology.
Stefan W. Ryter, Suzanne M. Cloonan, and Augustine M. K. Choi
Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
Autophagy is a dynamic process by which cytosolic material, including organelles, proteins, and pathogens, are sequestered into membrane vesicles called autophagosomes, and then delivered to the lysosome for degradation. By recycling cellular components, this process provides a mechanism for adaptation to starvation. The regulation of autophagy by nutrient signals involves a complex network of proteins that include mammalian target of rapamycin, the class III phosphatidylinositol-3 kinase/Beclin 1 complex, and two ubiquitin-like conjugation systems. Additionally, autophagy, which can be induced by multiple forms of chemical and physical stress, including endoplasmic reticulum stress, and hypoxia, plays an integral role in the mammalian stress response. Recent studies indicate that, in addition to bulk assimilation of cytosol, autophagy may proceed through selective pathways that target distinct cargoes to autophagosomes. The principle homeostatic functions of autophagy include the selective clearance of aggregated protein to preserve proteostasis, and the selective removal of dysfunctional mitochondria (mitophagy). Additionally, autophagy plays a central role in innate and adaptive immunity, with diverse functions such as regulation of inflammatory responses, antigen presentation, and pathogen clearance. Autophagy can preserve cellular function in a wide variety of tissue injury and disease states, however, maladaptive or pro-pathogenic outcomes have also been described. Among the many diseases where autophagy may play a role include proteopathies which involve aberrant accumulation of proteins (e.g., neurodegenerative disorders), infectious diseases, and metabolic disorders such as diabetes and metabolic syndrome. Targeting the autophagy pathway and its regulatory components may eventually lead to the development of therapeutics.
Keywords: autophagy, innate immunity, metabolism, mitophagy, neurodegeneration, proteostasis
Seongryong Kim, Hyun-Sup Song, Jihyun Yu, and You-Me Kim
Mol. Cells 2021; 44(5): 342-355 https://doi.org/10.14348/molcells.2021.0067Dong-Hyung Cho, Jin Kyung Kim, and Eun-Kyeong Jo
Mol. Cells 2020; 43(1): 10-22 https://doi.org/10.14348/molcells.2020.2329Seung-Min Yoo, and Yong-Keun Jung
Mol. Cells 2018; 41(1): 18-26 https://doi.org/10.14348/molcells.2018.2277