Mol. Cells 2012; 34(3): 305-313
Published online September 6, 2012
https://doi.org/10.1007/s10059-012-0122-2
© The Korean Society for Molecular and Cellular Biology
Correspondence to : *Correspondence: khpaek95@korea.ac.kr
The transcription factor ATAF2, one of the plant specific NAC family genes, is known as repressor of pathogenesisrelated genes and responsive to the diverse defense-related hormones, pathogen infection, and wounding stress. Furthermore, it is important to consider that tryptophandependant IAA biosynthesis pathway can be activated by wounding and pathogen. We found that ATAF2pro::GUS reporter was induced upon indole-3-acetonitrile (IAN) treatments. And ataf2 mutant showed reduced sensitivity to IAN whereas 35S::ATAF2 plants showed hyper-sensitivity to IAN. IAN biosynthesis required nitrilase involved in the conversion of IAN to an auxin, indole-3-acetic acid (IAA). We found that the NIT2 gene was repressed in ataf2 knockout plants. Expression of both ATAF2 and NIT2 genes was induced by IAN treatment. Transgenic plants overexpressing ATAF2 showed up-regulated NIT2 expression. ATAF2 activated promoter of the NIT2 gene in Arabidopsis protoplasts. Electrophoretic mobility shift assay revealed that NIT2 promoter region from position -117 to -82 contains an ATAF2 binding site where an imperfect palindrome sequence was critical to the protein-DNA interaction. These findings indicate that ATAF2 regulates NIT2 gene expression via NIT2 promoter binding.
Keywords Arabidopsis, ATAF2, Auxin, NAC transcription factor, Nitrilase
Mol. Cells 2012; 34(3): 305-313
Published online September 30, 2012 https://doi.org/10.1007/s10059-012-0122-2
Copyright © The Korean Society for Molecular and Cellular Biology.
Sung Un Huh, Suk-Bae Lee, Hwang Hyun Kim, Kyung-Hee Paek*
School of Life Sciences and Biotechnology, Korea University, Seoul, 136-701, Korea
Correspondence to:*Correspondence: khpaek95@korea.ac.kr
The transcription factor ATAF2, one of the plant specific NAC family genes, is known as repressor of pathogenesisrelated genes and responsive to the diverse defense-related hormones, pathogen infection, and wounding stress. Furthermore, it is important to consider that tryptophandependant IAA biosynthesis pathway can be activated by wounding and pathogen. We found that ATAF2pro::GUS reporter was induced upon indole-3-acetonitrile (IAN) treatments. And ataf2 mutant showed reduced sensitivity to IAN whereas 35S::ATAF2 plants showed hyper-sensitivity to IAN. IAN biosynthesis required nitrilase involved in the conversion of IAN to an auxin, indole-3-acetic acid (IAA). We found that the NIT2 gene was repressed in ataf2 knockout plants. Expression of both ATAF2 and NIT2 genes was induced by IAN treatment. Transgenic plants overexpressing ATAF2 showed up-regulated NIT2 expression. ATAF2 activated promoter of the NIT2 gene in Arabidopsis protoplasts. Electrophoretic mobility shift assay revealed that NIT2 promoter region from position -117 to -82 contains an ATAF2 binding site where an imperfect palindrome sequence was critical to the protein-DNA interaction. These findings indicate that ATAF2 regulates NIT2 gene expression via NIT2 promoter binding.
Keywords: Arabidopsis, ATAF2, Auxin, NAC transcription factor, Nitrilase
Chanhee Kim, Sun Ji Kim, Jinkil Jeong, Eunae Park, Eunkyoo Oh, Youn-Il Park, Pyung Ok Lim, and Giltsu Choi
Mol. Cells 2020; 43(7): 645-661 https://doi.org/10.14348/molcells.2020.0117Gyuree Kim, Sejeong Jang, Eun Kyung Yoon, Shin Ae Lee, Souvik Dhar, Jinkwon Kim, Myeong Min Lee, and Jun Lim
Mol. Cells 2018; 41(12): 1033-1044 https://doi.org/10.14348/molcells.2018.0363Laila Khaleda, Hee Jin Park, Dae-Jin Yun, Jong-Rok Jeon, Min Gab Kim, Joon-Yung Cha, and Woe-Yeon Kim
Mol. Cells 2017; 40(12): 966-975 https://doi.org/10.14348/molcells.2017.0229