Mol. Cells 2008; 26(6): 536-547
Published online January 1, 1970
© The Korean Society for Molecular and Cellular Biology
Anthocyanidin synthase (ANS, leucoanthocyanidin oxygenase), a 2-oxoglutarate iron-dependent oxygenase, catalyzed the penultimate step in the biosynthesis of the anthocyanin class of flavonoids, from the colorless leucoanthocyanidins to the colored anthocyanidins. The full-length cDNA and genomic DNA sequences of ANS gene (designated as GbANS) were isolated from Ginkgo biloba for the first time. The full-length cDNA of GbANS contained a 1062-bp open reading frame (ORF) encoding a 354-amino-acid protein. The genomic DNA analysis showed that GbANS gene had three exons and two introns. The deduced GbANS protein showed high identities to other plant ANSs. The conserved amino acids (H-X-D) ligating ferrous iron and residues (R-X-S) participating in 2-oxoglutarate binding were found in GbANS at the similar positions like other ANSs. Southern blot analysis indicated that GbANS belonged to a multi-gene family. The expression analysis by real-time PCR showed that GbANS expressed in a tissue-specific manner in G. biloba. GbANS was also found to be up-regulated by all of the six tested abiotic stresses, UV-B, abscisic acid, sucrose, salicylic acid, cold and ethylene, consistent with the promoter region analysis of GbANS. The recombinant protein was successfully expressed in E. coli strain with pET-28a vector. The in vitro enzyme activity assay by HPLC indicated that recombinant GbANS protein could catalyze the formation the cyanidin from leucocyanidin and conversion of dihydroquercetin to quercetin, suggesting GbANS is a bifunctional enzyme within the anthocyanidin and flavonol biosynthetic pathway.
Keywords abiotic stresses, anthocyanidin synthase, enzyme activity, GbANS, gene expression, Ginkgo biloba, in vitro
Mol. Cells 2008; 26(6): 536-547
Published online December 31, 2008
Copyright © The Korean Society for Molecular and Cellular Biology.
Feng Xu, Hua Cheng, Rong Cai, Lin Ling Li, Jie Chang, Jun Zhu, Feng Xia Zhang, Liu Ji Chen, Yan Wang, Shu Han Cheng and Shui Yuan Cheng
Anthocyanidin synthase (ANS, leucoanthocyanidin oxygenase), a 2-oxoglutarate iron-dependent oxygenase, catalyzed the penultimate step in the biosynthesis of the anthocyanin class of flavonoids, from the colorless leucoanthocyanidins to the colored anthocyanidins. The full-length cDNA and genomic DNA sequences of ANS gene (designated as GbANS) were isolated from Ginkgo biloba for the first time. The full-length cDNA of GbANS contained a 1062-bp open reading frame (ORF) encoding a 354-amino-acid protein. The genomic DNA analysis showed that GbANS gene had three exons and two introns. The deduced GbANS protein showed high identities to other plant ANSs. The conserved amino acids (H-X-D) ligating ferrous iron and residues (R-X-S) participating in 2-oxoglutarate binding were found in GbANS at the similar positions like other ANSs. Southern blot analysis indicated that GbANS belonged to a multi-gene family. The expression analysis by real-time PCR showed that GbANS expressed in a tissue-specific manner in G. biloba. GbANS was also found to be up-regulated by all of the six tested abiotic stresses, UV-B, abscisic acid, sucrose, salicylic acid, cold and ethylene, consistent with the promoter region analysis of GbANS. The recombinant protein was successfully expressed in E. coli strain with pET-28a vector. The in vitro enzyme activity assay by HPLC indicated that recombinant GbANS protein could catalyze the formation the cyanidin from leucocyanidin and conversion of dihydroquercetin to quercetin, suggesting GbANS is a bifunctional enzyme within the anthocyanidin and flavonol biosynthetic pathway.
Keywords: abiotic stresses, anthocyanidin synthase, enzyme activity, GbANS, gene expression, Ginkgo biloba, in vitro
Sin-Gu Jeong, Takbum Ohn, Chul Ho Jang, Karthikeyan Vijayakumar, and Gwang-Won Cho
Mol. Cells 2020; 43(10): 848-855 https://doi.org/10.14348/molcells.2020.0135Jisoo Park, Woochan Choi, Abdul Rouf Dar, Rebecca A. Butcher, and Kyuhyung Kim
Mol. Cells 2019; 42(1): 28-35 https://doi.org/10.14348/molcells.2018.0380Chanchal Mandal, Sun Hwa Kim, Sung Chul Kang, Jin Choul Chai, Young Seek Lee, Kyoung Hwa Jung, and Young Gyu Chai
Mol. Cells 2017; 40(10): 737-751 https://doi.org/10.14348/molcells.2017.0069