TOP

Research Article

Split Viewer

Mol. Cells 2012; 33(5): 439-447

Published online November 25, 2011

https://doi.org/10.1007/s10059-012-2133-4

© The Korean Society for Molecular and Cellular Biology

Molecular Cloning and Functional Expression of Chitinase-Encoding cDNA from the Cabbage Moth, Mamestra brassicae

Aron Paek, Hee Yun Park, and Seong Eun Jeong*

Department of Biological Sciences, Hannam University, Daejeon 306-791, Korea

Correspondence to : *Correspondence: sej@hnu.kr

Received: June 23, 2011; Revised: September 19, 2011; Accepted: September 23, 2011

Abstract

Chitinase is a rate-limiting and endo-splitting enzyme involved in the bio-degradation of chitin, an important component of the cuticular exoskeleton and peritrophic matrix in insects. We isolated a cDNA-encoding chitinase from the last larval integument of the cabbage moth, Mamestra brassicae (Lepidoptera; Noctuidae), cloned the ORF cDNA into E. coli to confirm its functionality, and analyzed the deduced amino acid sequence in comparison with previously described lepidopteran chitinases. M. brassicae chitinase expressed in the transformed E. coli cells with the chitinase-encoding cDNA enhanced cell proliferation to about 1.6 times of the untransformed wild type strain in a colloidal chitin-including medium with only a very limited amount of other nutrients. Compared with the wild type strain, the intracellular levels of chitin degradation derivatives, glucosamine and N-acetylglucosamine were about 7.2 and 2.3 times higher, respectively, while the extracellular chitinase activity was about 2.2 times higher in the transformed strain. The ORF of M. brassicae chitinaseencoding cDNA consisted of 1686 nucleotides (562 amino acid residues) except for the stop codon, and its deduced amino acid composition revealed a calculated molecular weight of 62.7 and theoretical pI of 5.3. The ORF was composed of N-terminal leading signal peptide (AA 1-20), catalytic domain (AA 21-392), linker region (AA 393-498), and C-terminal chitin-binding domain (AA 499-562) showing its characteristic structure as a molting fluid chitinase. In phylogenetic analysis, the enzymes from 6 noctuid species were grouped together, separately from a group of 3 bombycid and 1 tortricid enzymes, corresponding to their taxonomic relationships at both the family and genus levels.

Keywords cloning, chitinase, E. coli, functional expression, Mamestra brassicae

Article

Research Article

Mol. Cells 2012; 33(5): 439-447

Published online May 31, 2012 https://doi.org/10.1007/s10059-012-2133-4

Copyright © The Korean Society for Molecular and Cellular Biology.

Molecular Cloning and Functional Expression of Chitinase-Encoding cDNA from the Cabbage Moth, Mamestra brassicae

Aron Paek, Hee Yun Park, and Seong Eun Jeong*

Department of Biological Sciences, Hannam University, Daejeon 306-791, Korea

Correspondence to:*Correspondence: sej@hnu.kr

Received: June 23, 2011; Revised: September 19, 2011; Accepted: September 23, 2011

Abstract

Chitinase is a rate-limiting and endo-splitting enzyme involved in the bio-degradation of chitin, an important component of the cuticular exoskeleton and peritrophic matrix in insects. We isolated a cDNA-encoding chitinase from the last larval integument of the cabbage moth, Mamestra brassicae (Lepidoptera; Noctuidae), cloned the ORF cDNA into E. coli to confirm its functionality, and analyzed the deduced amino acid sequence in comparison with previously described lepidopteran chitinases. M. brassicae chitinase expressed in the transformed E. coli cells with the chitinase-encoding cDNA enhanced cell proliferation to about 1.6 times of the untransformed wild type strain in a colloidal chitin-including medium with only a very limited amount of other nutrients. Compared with the wild type strain, the intracellular levels of chitin degradation derivatives, glucosamine and N-acetylglucosamine were about 7.2 and 2.3 times higher, respectively, while the extracellular chitinase activity was about 2.2 times higher in the transformed strain. The ORF of M. brassicae chitinaseencoding cDNA consisted of 1686 nucleotides (562 amino acid residues) except for the stop codon, and its deduced amino acid composition revealed a calculated molecular weight of 62.7 and theoretical pI of 5.3. The ORF was composed of N-terminal leading signal peptide (AA 1-20), catalytic domain (AA 21-392), linker region (AA 393-498), and C-terminal chitin-binding domain (AA 499-562) showing its characteristic structure as a molting fluid chitinase. In phylogenetic analysis, the enzymes from 6 noctuid species were grouped together, separately from a group of 3 bombycid and 1 tortricid enzymes, corresponding to their taxonomic relationships at both the family and genus levels.

Keywords: cloning, chitinase, E. coli, functional expression, Mamestra brassicae

Mol. Cells
Mar 31, 2023 Vol.46 No.3, pp. 131~189
COVER PICTURE
The physiologically important cytoprotective signaling in normal cells (background area in turquoise) mediated by NRF2 (blue chain) is often hijacked by cancer cells (red ball) in the tumor microenvironment (yellow area). However, the differential roles of NRF2 throughout the multistage carcinogenesis remains largely unresolved (white-colored overlapping misty areas).

Share this article on

  • line
  • mail

Related articles in Mol. Cells

Molecules and Cells

eISSN 0219-1032
qr-code Download