TOP

Research Article

Split Viewer

Mol. Cells 2010; 29(5): 449-456

Published online April 12, 2010

https://doi.org/10.1007/s10059-010-0055-6

© The Korean Society for Molecular and Cellular Biology

A Transcriptional Feedback Loop Modulating Signaling Crosstalks between Auxin and Brassinosteroid in Arabidopsis

Jae-Hoon Jung1, Minsun Lee1, and Chung-Mo Park1,2,*

1Department of Chemistry, Seoul National University, Seoul 151-742, Korea, 2Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742, Korea

Correspondence to : *Correspondence: cmpark@snu.ac.kr

Received: August 7, 2010; Revised: January 9, 2010; Accepted: January 20, 2010

Abstract

Auxin and brassinosteroid (BR) play essential roles in diverse aspects of growth and developmental processes in plants mainly through coordinate regulation of cell division, elongation, and differentiation. Consistent with the overlapped roles, accumulating evidence indicates that the two growth hormones act in a synergistic as well as in an interdependent manner in many cases, although the underlying molecular mechanisms are not fully understood. Here, we demonstrate that auxin and BR signaling pathways are interconnected at the transcriptional level via a negative feedback loop. An Arabidopsis activating tagging mutant dlf-1D exhibited dwarfed growth with small, dark-green leaves and reduced fertility. Hormone feeding assays revealed that the mutant phenotype is caused by the reduction of endogenous BR level. Consistent with this, a gene encoding the CYP72C1 enzyme that catabolizes BR was up-regulated. Notably, the transcript level of the ARF8 transcription factor gene, which modulates the expression of auxin-responsive genes, was significantly elevated in the mutant. In addition, the ARF8 gene expression was significantly reduced by BR but induced by brassinazole, a BR biosynthetic inhibitor. On the other hand, two BR catabolic pathway genes, DLF (CYP72C1) and BAS1, were induced by auxin. Our observations indicate that at least part of auxin and BR signaling pathways are unified through a transcriptional feedback control of the DLF and ARF8 genes.

Keywords activation tagging mutagenesis, Arabidopsis, auxin, brassinosteroid, signal transduction

Article

Research Article

Mol. Cells 2010; 29(5): 449-456

Published online May 31, 2010 https://doi.org/10.1007/s10059-010-0055-6

Copyright © The Korean Society for Molecular and Cellular Biology.

A Transcriptional Feedback Loop Modulating Signaling Crosstalks between Auxin and Brassinosteroid in Arabidopsis

Jae-Hoon Jung1, Minsun Lee1, and Chung-Mo Park1,2,*

1Department of Chemistry, Seoul National University, Seoul 151-742, Korea, 2Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-742, Korea

Correspondence to:*Correspondence: cmpark@snu.ac.kr

Received: August 7, 2010; Revised: January 9, 2010; Accepted: January 20, 2010

Abstract

Auxin and brassinosteroid (BR) play essential roles in diverse aspects of growth and developmental processes in plants mainly through coordinate regulation of cell division, elongation, and differentiation. Consistent with the overlapped roles, accumulating evidence indicates that the two growth hormones act in a synergistic as well as in an interdependent manner in many cases, although the underlying molecular mechanisms are not fully understood. Here, we demonstrate that auxin and BR signaling pathways are interconnected at the transcriptional level via a negative feedback loop. An Arabidopsis activating tagging mutant dlf-1D exhibited dwarfed growth with small, dark-green leaves and reduced fertility. Hormone feeding assays revealed that the mutant phenotype is caused by the reduction of endogenous BR level. Consistent with this, a gene encoding the CYP72C1 enzyme that catabolizes BR was up-regulated. Notably, the transcript level of the ARF8 transcription factor gene, which modulates the expression of auxin-responsive genes, was significantly elevated in the mutant. In addition, the ARF8 gene expression was significantly reduced by BR but induced by brassinazole, a BR biosynthetic inhibitor. On the other hand, two BR catabolic pathway genes, DLF (CYP72C1) and BAS1, were induced by auxin. Our observations indicate that at least part of auxin and BR signaling pathways are unified through a transcriptional feedback control of the DLF and ARF8 genes.

Keywords: activation tagging mutagenesis, Arabidopsis, auxin, brassinosteroid, signal transduction

Mol. Cells
Feb 28, 2023 Vol.46 No.2, pp. 69~129
COVER PICTURE
The bulk tissue is a heterogeneous mixture of various cell types, which is depicted as a skein of intertwined threads with diverse colors each of which represents a unique cell type. Single-cell omics analysis untangles efficiently the skein according to the color by providing information of molecules at individual cells and interpretation of such information based on different cell types. The molecules that can be profiled at the individual cell by single-cell omics analysis includes DNA (bottom middle), RNA (bottom right), and protein (bottom left). This special issue reviews single-cell technologies and computational methods that have been developed for the single-cell omics analysis and how they have been applied to improve our understanding of the underlying mechanisms of biological and pathological phenomena at the single-cell level.

Share this article on

  • line
  • mail

Related articles in Mol. Cells

Molecules and Cells

eISSN 0219-1032
qr-code Download