Mol. Cells 2009; 28(6): 565-573
Published online November 19, 2009
https://doi.org/10.1007/s10059-009-0159-z
© The Korean Society for Molecular and Cellular Biology
The pig could be a useful model to characterize molecular aspects determining several delicate phenotypes because they have been bred for those characteristics. The Korean native pig (KNP) is a regional breed in Korea that was characterized by relatively high intramuscular fat content and reddish meat color compared to other western breeds such as Yorkshire (YS). YS grew faster and contained more lean muscle than KNP. We compared the KNP to Yorksire to find molecular clues determining muscle characteristics. The comparison of skeletal gene expression profiles between these two breeds showed molecular differences in muscle. We found 82 differentially expressed genes (DEGs) defined by fold change (more than 1.5 fold difference) and statistical significance (within 5% of false discovery rate). Functional analyses of these DEGs indicated up-regulation of most genes involved in cell cycle arrest, down-regulation of most genes involved in cellular diffe-rentiation and its inhibition, down-regulation of most genes encoding component of muscular-structural system, and up-regulation of most genes involved in diverse metabolism in KNP. Especially, DEGs in above-mentioned categories included a large number of genes encoding proteins directly or indirectly involved in p53 pathway. Our results indicated a possible role of p53 to determine muscle characteristics between these two breeds.
Keywords differentially expressed gene, Korean native pig, p53, skeletal muscle, Sus scrofa
Mol. Cells 2009; 28(6): 565-573
Published online December 31, 2009 https://doi.org/10.1007/s10059-009-0159-z
Copyright © The Korean Society for Molecular and Cellular Biology.
Seung-Soo Kim, Jung-Rok Kim, Jin-Kyoo Moon, Bong-Hwan Choi, Tae-Hun Kim, Kwan-Suk Kim, Jong-Joo Kim, and Cheol-Koo Lee
The pig could be a useful model to characterize molecular aspects determining several delicate phenotypes because they have been bred for those characteristics. The Korean native pig (KNP) is a regional breed in Korea that was characterized by relatively high intramuscular fat content and reddish meat color compared to other western breeds such as Yorkshire (YS). YS grew faster and contained more lean muscle than KNP. We compared the KNP to Yorksire to find molecular clues determining muscle characteristics. The comparison of skeletal gene expression profiles between these two breeds showed molecular differences in muscle. We found 82 differentially expressed genes (DEGs) defined by fold change (more than 1.5 fold difference) and statistical significance (within 5% of false discovery rate). Functional analyses of these DEGs indicated up-regulation of most genes involved in cell cycle arrest, down-regulation of most genes involved in cellular diffe-rentiation and its inhibition, down-regulation of most genes encoding component of muscular-structural system, and up-regulation of most genes involved in diverse metabolism in KNP. Especially, DEGs in above-mentioned categories included a large number of genes encoding proteins directly or indirectly involved in p53 pathway. Our results indicated a possible role of p53 to determine muscle characteristics between these two breeds.
Keywords: differentially expressed gene, Korean native pig, p53, skeletal muscle, Sus scrofa
Hyungmin Kim, Jeehan Lee, Soon-Young Jung, Hye Hyeon Yun, Jeong-Heon Ko, and Jeong-Hwa Lee
Mol. Cells 2022; 45(10): 718-728 https://doi.org/10.14348/molcells.2022.0037Jongin Lee, Nayoung Park, Daehwan Lee, and Jaebum Kim
Mol. Cells 2020; 43(8): 728-738 https://doi.org/10.14348/molcells.2020.0040Hyeon Ju Lee, Yu-Jin Jung, Seungkoo Lee, Jong-Il Kim, and Jeong A. Han
Mol. Cells 2020; 43(4): 397-407 https://doi.org/10.14348/molcells.2020.2231