Top

Minireview

Split Viewer

Mol. Cells 2009; 28(4): 321-329

Published online October 31, 2009

https://doi.org/10.1007/s10059-009-0156-2

© The Korean Society for Molecular and Cellular Biology

Molecular Mechanisms of Generation for NitricOxide and Reactive Oxygen Species, and Role ofthe Radical Burst in Plant Immunity

Hirofumi Yoshioka, Shuta Asai, Miki Yoshioka, and Michie Kobayashi

Received: September 30, 2009; Accepted: October 6, 2009

Abstract

Rapid production of nitric oxide (NO) and reactive oxygen species (ROS) has been implicated in the regulation of innate immunity in plants. A potato calcium-dependent protein kinase (StCDPK5) activates an NADPH oxidase StRBOHA to D by direct phosphorylation of N-terminal regions, and heterologous expression of StCDPK5 and StRBOHs in Nicotiana benthamiana results in oxidative burst. The transgenic potato plants that carry a constitutively active StCDPK5 driven by a pathogen-inducible promoter of the potato showed high resistance to late blight pathogen Phytophthora infestans accompanied by HR-like cell death and H2O2 accumulation in the attacked cells. In contrast, these plants showed high susceptibility to early blight necrotrophic pathogen Alternaria solani, suggesting that oxidative burst confers high resistance to biotrophic pathogen, but high susceptibility to necrotrophic pathogen. NO and ROS synergistically function in defense responses. Two MAPK cascades, MEK2-SIPK and cytokinesis-related MEK1-NTF6, are involved in the induction of NbRBOHB gene in N. benthamiana. On the other hand, NO burst is regulated by the MEK2-SIPK cascade. Conditional activation of SIPK in potato plants induces oxidative and NO bursts, and confers resistance to both biotrophic and necrotrophic pathogens, indicating the plants may have obtained during evolution the signaling pathway which regulates both NO and ROS production to adapt to wide-spectrum pathogens.

Keywords CDPK, NADPH oxidase, nitric oxide, MAPK, reactive oxygen species

Article

Minireview

Mol. Cells 2009; 28(4): 321-329

Published online October 31, 2009 https://doi.org/10.1007/s10059-009-0156-2

Copyright © The Korean Society for Molecular and Cellular Biology.

Molecular Mechanisms of Generation for NitricOxide and Reactive Oxygen Species, and Role ofthe Radical Burst in Plant Immunity

Hirofumi Yoshioka, Shuta Asai, Miki Yoshioka, and Michie Kobayashi

Received: September 30, 2009; Accepted: October 6, 2009

Abstract

Rapid production of nitric oxide (NO) and reactive oxygen species (ROS) has been implicated in the regulation of innate immunity in plants. A potato calcium-dependent protein kinase (StCDPK5) activates an NADPH oxidase StRBOHA to D by direct phosphorylation of N-terminal regions, and heterologous expression of StCDPK5 and StRBOHs in Nicotiana benthamiana results in oxidative burst. The transgenic potato plants that carry a constitutively active StCDPK5 driven by a pathogen-inducible promoter of the potato showed high resistance to late blight pathogen Phytophthora infestans accompanied by HR-like cell death and H2O2 accumulation in the attacked cells. In contrast, these plants showed high susceptibility to early blight necrotrophic pathogen Alternaria solani, suggesting that oxidative burst confers high resistance to biotrophic pathogen, but high susceptibility to necrotrophic pathogen. NO and ROS synergistically function in defense responses. Two MAPK cascades, MEK2-SIPK and cytokinesis-related MEK1-NTF6, are involved in the induction of NbRBOHB gene in N. benthamiana. On the other hand, NO burst is regulated by the MEK2-SIPK cascade. Conditional activation of SIPK in potato plants induces oxidative and NO bursts, and confers resistance to both biotrophic and necrotrophic pathogens, indicating the plants may have obtained during evolution the signaling pathway which regulates both NO and ROS production to adapt to wide-spectrum pathogens.

Keywords: CDPK, NADPH oxidase, nitric oxide, MAPK, reactive oxygen species

Mol. Cells
Sep 30, 2022 Vol.45 No.9, pp. 603~672
COVER PICTURE
The Target of Rapamycin Complex (TORC) is a central regulatory hub in eukaryotes, which is well conserved in diverse plant species, including tomato (Solanum lycopersicum). Inhibition of TORC genes (SlTOR, SlLST8, and SlRAPTOR) by VIGS (virus-induced gene silencing) results in early fruit ripening in tomato. The red/ orange tomatoes are early-ripened TORC-silenced fruits, while the green tomato is a control fruit. Top, left, control fruit (TRV2-myc); top, right, TRV2-SlLST8; bottom, left, TRV2-SlTOR; bottom, right, TRV2-SlRAPTOR(Choi et al., pp. 660-672).

Share this article on

  • line
  • mail

Related articles in Mol. Cells

Molecules and Cells

eISSN 0219-1032
qr-code Download