Mol. Cells 2009; 27(5): 609-613
Published online May 15, 2009
https://doi.org/10.1007/s10059-009-0074-3
© The Korean Society for Molecular and Cellular Biology
It has been reported that selenoprotein W (SelW) mRNA is highly expressed in the developing central nerve system of rats, and its expression is maintained until the early postnatal stage. We here found that SelW protein significantly increased in mouse brains of postnatal day 8 and 20 relative to embryonic day 15. This was accompanied by increased expression of SOD1 and SOD2. When the expression of SelW in primary cultured cells derived from embryonic cerebral cortex was knocked down with small interfering RNAs (siRNAs), SelW siRNA-transfected neuronal cells were more sensitive to the oxidative stress induced by treatment of H2O2 than control cells. TUNEL assays revealed that H2O2-induced apoptotic cell death occurred at a higher frequency in the siRNA-transfected cells than in the control cells. Taken together, our findings suggest that SelW plays an important role in protection of neurons from oxidative stress during neuronal development.
Keywords antioxidant, neuronal cells, oxidative stress, selenium, selenoprotein W
Mol. Cells 2009; 27(5): 609-613
Published online May 31, 2009 https://doi.org/10.1007/s10059-009-0074-3
Copyright © The Korean Society for Molecular and Cellular Biology.
Youn Wook Chung, Daewon Jeong, Ok Jeong Noh, Yong Hwan Park, Soo Im Kang, Min Goo Lee, Tae-Hoon Lee, Moon Bin Yim, and Ick Young Kim
It has been reported that selenoprotein W (SelW) mRNA is highly expressed in the developing central nerve system of rats, and its expression is maintained until the early postnatal stage. We here found that SelW protein significantly increased in mouse brains of postnatal day 8 and 20 relative to embryonic day 15. This was accompanied by increased expression of SOD1 and SOD2. When the expression of SelW in primary cultured cells derived from embryonic cerebral cortex was knocked down with small interfering RNAs (siRNAs), SelW siRNA-transfected neuronal cells were more sensitive to the oxidative stress induced by treatment of H2O2 than control cells. TUNEL assays revealed that H2O2-induced apoptotic cell death occurred at a higher frequency in the siRNA-transfected cells than in the control cells. Taken together, our findings suggest that SelW plays an important role in protection of neurons from oxidative stress during neuronal development.
Keywords: antioxidant, neuronal cells, oxidative stress, selenium, selenoprotein W
Sun-Young Shin, Il-Sup Kim, Yul-Ho Kim, Hyang-Mi Park, Jang-Yong Lee, Hong-Gyu Kang and Ho-Sung Yoon
Mol. Cells 2008; 26(6): 616-620 https://doi.org/10.14348/.2008.26.6.616Yoonjeong Lee, Jaehyeon Kim, Hyunjin Kim, Ji Eun Han, Sohee Kim, Kyong-hwa Kang, Donghoon Kim, Jong-Min Kim, and Hyongjong Koh
Mol. Cells 2022; 45(7): 454-464 https://doi.org/10.14348/molcells.2022.5002Ki-Hong Jang, Yeseong Hwang, and Eunhee Kim
Mol. Cells 2020; 43(7): 632-644 https://doi.org/10.14348/molcells.2020.0078