TOP

Minireview

Split Viewer

Mol. Cells 2009; 27(5): 497-502

Published online May 15, 2009

https://doi.org/10.1007/s10059-009-0068-1

© The Korean Society for Molecular and Cellular Biology

Rhythmic Gene Expression in Somite Formation and Neural Development

Ryoichiro Kageyama, Yasutaka Niwa, and Hiromi Shimojo

Received: March 17, 2009; Accepted: March 20, 2009

Abstract

In mouse embryos, somite formation occurs every two hours, and this periodic event is regulated by a biological clock called the segmentation clock, which involves cyclic expression of the basic helix-loop-helix gene Hes7. Hes7 expression oscillates by negative feedback and is cooperatively regulated by Fgf and Notch signaling. Both loss of expression and sustained expression of Hes7 result in severe somite fusion, suggesting that Hes7 oscillation is required for proper somite segmentation. Expression of a related gene, Hes1, also oscillates by negative feedback with a period of about two hours in many cell types such as neural progenitor cells. Hes1 is required for maintenance of neural progenitor cells, but persistent Hes1 expression inhibits proliferation and differentiation of these cells, suggesting that Hes1 oscillation is required for their proper activities. Hes1 oscillation regulates cyclic expression of the proneural gene Neurogenin2 (Ngn2) and the Notch ligand Delta1, which in turn lead to maintenance of neural progenitor cells by mutual activation of Notch signaling. Taken together, these results suggest that oscillatory expression with short periods (ultradian oscillation) plays an important role in many biological events.

Keywords biological clock, negative feedback, segmentation clock, ultradian oscillation

Article

Minireview

Mol. Cells 2009; 27(5): 497-502

Published online May 31, 2009 https://doi.org/10.1007/s10059-009-0068-1

Copyright © The Korean Society for Molecular and Cellular Biology.

Rhythmic Gene Expression in Somite Formation and Neural Development

Ryoichiro Kageyama, Yasutaka Niwa, and Hiromi Shimojo

Received: March 17, 2009; Accepted: March 20, 2009

Abstract

In mouse embryos, somite formation occurs every two hours, and this periodic event is regulated by a biological clock called the segmentation clock, which involves cyclic expression of the basic helix-loop-helix gene Hes7. Hes7 expression oscillates by negative feedback and is cooperatively regulated by Fgf and Notch signaling. Both loss of expression and sustained expression of Hes7 result in severe somite fusion, suggesting that Hes7 oscillation is required for proper somite segmentation. Expression of a related gene, Hes1, also oscillates by negative feedback with a period of about two hours in many cell types such as neural progenitor cells. Hes1 is required for maintenance of neural progenitor cells, but persistent Hes1 expression inhibits proliferation and differentiation of these cells, suggesting that Hes1 oscillation is required for their proper activities. Hes1 oscillation regulates cyclic expression of the proneural gene Neurogenin2 (Ngn2) and the Notch ligand Delta1, which in turn lead to maintenance of neural progenitor cells by mutual activation of Notch signaling. Taken together, these results suggest that oscillatory expression with short periods (ultradian oscillation) plays an important role in many biological events.

Keywords: biological clock, negative feedback, segmentation clock, ultradian oscillation

Mol. Cells
Jun 30, 2023 Vol.46 No.6, pp. 329~398
COVER PICTURE
The cellular proteostasis network is adaptively modulated upon cellular stress, thereby protecting cells from proteostasis collapse. Heat shock induces the translocation of misfolded proteins and the chaperone protein HSP70 into nucleolus, where nuclear protein quality control primarily occurs. Nuclear RNA export factor 1 (green), nucleolar protein fibrillarin (red), and nuclei (blue) were visualized in NIH3T3 cells under basal (left) and heat shock (right) conditions (Park et al., pp. 374-386).

Share this article on

  • line
  • mail

Related articles in Mol. Cells

Molecules and Cells

eISSN 0219-1032
qr-code Download