Mol. Cells 2009; 27(4): 467-473
Published online April 13, 2009
https://doi.org/10.1007/s10059-009-0062-7
© The Korean Society for Molecular and Cellular Biology
Our previous study suggested that OsBWMK1, a gene which encodes a member of the rice MAP kinase family, generates transcript variants which show distinct expres-sion patterns in response to environmental stresses. The transcript variants are generated by alternative splicing and by use of alternative promoters. To test whether the two alternative promoters, pOsBWMK1L (promoter for the OsBWMK1L splice variant) and pOsBWMK1S (promoter for the OsBWMK1S splice variant), are biologically functional, we analyzed transgenic plants expressing GUS fusion constructs for each promoter. Both pOsBWMK1L and pOsBWMK1S are biologically active, although the activity of pOsBWMK1S is lower than that of pOsBWMK1L. Histochemical analysis revealed that pOsBWMK1L is constitutively active in most tissues at various developmental stages in rice and Arabidopsis, whereas pOsBWMK1S activity is spatially and temporally restricted. Furthermore, the expression of pOsBWMK1S::GUS was upregulated in response to hydrogen peroxide, a plant defense signaling molecule, in both plant species. These results suggest that the differential expression of OsBWMK1 splice variants is the result of alternative promoter usage and, moreover, that the mechanisms controlling OsBWMK1 gene expression are conserved in both monocot and dicot plants.
Keywords alternative promoter, gene expression regulation, MAP kinase, rice, splice variant
Mol. Cells 2009; 27(4): 467-473
Published online April 30, 2009 https://doi.org/10.1007/s10059-009-0062-7
Copyright © The Korean Society for Molecular and Cellular Biology.
Sung Cheol Koo, Man Soo Choi, Hyun Jin Chun, Hyeong Cheol Park, Chang Ho Kang, Sang In Shim, Jong Il Chung, Yong Hwa Cheong, Sang Yeol Lee, Dae-Jin Yun, Woo Sik Chung, Moo Je Cho, and Min Chul Kim
Our previous study suggested that OsBWMK1, a gene which encodes a member of the rice MAP kinase family, generates transcript variants which show distinct expres-sion patterns in response to environmental stresses. The transcript variants are generated by alternative splicing and by use of alternative promoters. To test whether the two alternative promoters, pOsBWMK1L (promoter for the OsBWMK1L splice variant) and pOsBWMK1S (promoter for the OsBWMK1S splice variant), are biologically functional, we analyzed transgenic plants expressing GUS fusion constructs for each promoter. Both pOsBWMK1L and pOsBWMK1S are biologically active, although the activity of pOsBWMK1S is lower than that of pOsBWMK1L. Histochemical analysis revealed that pOsBWMK1L is constitutively active in most tissues at various developmental stages in rice and Arabidopsis, whereas pOsBWMK1S activity is spatially and temporally restricted. Furthermore, the expression of pOsBWMK1S::GUS was upregulated in response to hydrogen peroxide, a plant defense signaling molecule, in both plant species. These results suggest that the differential expression of OsBWMK1 splice variants is the result of alternative promoter usage and, moreover, that the mechanisms controlling OsBWMK1 gene expression are conserved in both monocot and dicot plants.
Keywords: alternative promoter, gene expression regulation, MAP kinase, rice, splice variant
Jinmi Yoon, Lae-Hyeon Cho, Sichul Lee, Richa Pasriga, Win Tun, Jungil Yang, Hyeryung Yoon, Hee Joong Jeong, Jong-Seong Jeon, and Gynheung An
Mol. Cells 2019; 42(12): 858-868 https://doi.org/10.14348/molcells.2019.0141Dae-Woo Lee, Sang-Kyu Lee, Md Mizanor Rahman, Yu-Jin Kim, Dabing Zhang, and Jong-Seong Jeon
Mol. Cells 2019; 42(10): 711-720 https://doi.org/10.14348/molcells.2019.0109Kieu Thi Xuan Vo, Sang-Kyu Lee, Morgan K. Halane, Min-Young Song, Trung Viet Hoang, Chi-Yeol Kim, Sook-Young Park, Junhyun Jeon, Sun Tae Kim, Kee Hoon Sohn, and Jong-Seong Jeon
Mol. Cells 2019; 42(9): 637-645 https://doi.org/10.14348/molcells.2019.0070