Mol. Cells 2009; 27(4): 417-422
Published online April 13, 2009
https://doi.org/10.1007/s10059-009-0059-2
© The Korean Society for Molecular and Cellular Biology
Lipoxygenase (LO) metabolites are generated in inflamed tissues. However, it is unclear whether the inhibition of the LO activity regulates the expression of c-Fos protein, a pain marker in the spinal cord. Here we used a carrageenan-induced inflammation model to examine the role of LO in the development of c-Fos expression. Intradermally injected carrageenan caused elevated number of cells exhibiting Fos-like immunoreactivity (Fos-LI) in the spinal dorsal horn, and decreased the thermal and mechanical threshold in Hargreaves and von Frey tests. Pretreatment with an inhibitor of phospholipase A2, that generates the LO substrate, prior to the carrageenan injection significantly reduced the number of Fos-(+) cells. A general LO inhibitor NDGA, a 5-LO inhibitor AA-861 and a 12-LO inhibitor baicalein also exhibited the similar effects. Moreover, the LO inhibitors suppressed carrageenan-induced thermal and mechanical hyperalgesic behaviors, which inidcates that the changes in Fos expression correlates with those in the nociceptive behaviors in the inflamed rats. LO products are endogenous TRPV1 activators and pretreat-ment with BCTC, a TRPV1 antagonist inhibited the thermal but not the mechanical hypersensitivity. Overall, our results from the Fos-LI and behavior tests suggest that LO products released from inflamed tissues contribute to nociception during carrageenan-induced inflammation, in-dicating that the LO pathway is a possible target for modulating inflammatory pain.
Keywords Fos immunohystochemistry, inflammation, lipoxygenase, pain, TRPV1
Mol. Cells 2009; 27(4): 417-422
Published online April 30, 2009 https://doi.org/10.1007/s10059-009-0059-2
Copyright © The Korean Society for Molecular and Cellular Biology.
Sungjae Yoo, Shanshu Han, Young Shin Park, Jang-Hern Lee, Uhtaek Oh, and Sun Wook Hwang
Lipoxygenase (LO) metabolites are generated in inflamed tissues. However, it is unclear whether the inhibition of the LO activity regulates the expression of c-Fos protein, a pain marker in the spinal cord. Here we used a carrageenan-induced inflammation model to examine the role of LO in the development of c-Fos expression. Intradermally injected carrageenan caused elevated number of cells exhibiting Fos-like immunoreactivity (Fos-LI) in the spinal dorsal horn, and decreased the thermal and mechanical threshold in Hargreaves and von Frey tests. Pretreatment with an inhibitor of phospholipase A2, that generates the LO substrate, prior to the carrageenan injection significantly reduced the number of Fos-(+) cells. A general LO inhibitor NDGA, a 5-LO inhibitor AA-861 and a 12-LO inhibitor baicalein also exhibited the similar effects. Moreover, the LO inhibitors suppressed carrageenan-induced thermal and mechanical hyperalgesic behaviors, which inidcates that the changes in Fos expression correlates with those in the nociceptive behaviors in the inflamed rats. LO products are endogenous TRPV1 activators and pretreat-ment with BCTC, a TRPV1 antagonist inhibited the thermal but not the mechanical hypersensitivity. Overall, our results from the Fos-LI and behavior tests suggest that LO products released from inflamed tissues contribute to nociception during carrageenan-induced inflammation, in-dicating that the LO pathway is a possible target for modulating inflammatory pain.
Keywords: Fos immunohystochemistry, inflammation, lipoxygenase, pain, TRPV1
Mi Jeong Heo, Ji Ho Suh, Kyle L. Poulsen, Cynthia Ju, and Kang Ho Kim
Mol. Cells 2023; 46(9): 527-534 https://doi.org/10.14348/molcells.2023.0099Su-Jin Kim, Se Hui Lee, Binh Do Quang, Thanh-Tam Tran, Young-Gwon Kim, Jun Ko, Weon-Young Choi, Sun Young Lee, and Je-Hwang Ryu
Mol. Cells 2023; 46(10): 627-636 https://doi.org/10.14348/molcells.2023.0109Jihyun Kim, Seungwon Ryu, and Hye Young Kim
Mol. Cells 2021; 44(5): 301-309 https://doi.org/10.14348/molcells.2021.0053