Mol. Cells 2019; 42(10): 693-701
Published online October 16, 2019
https://doi.org/10.14348/molcells.2019.0199
© The Korean Society for Molecular and Cellular Biology
Correspondence to : younghsong@ajou.ac.kr
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/.
Plants monitor changes in day length to coordinate their flowering time with appropriate seasons. In
Keywords CONSTANS, FKF1, flowering, GIGANTEA, ZEITLUPE
Many plants transit from the vegetative to reproductive phase in the most favorable season to maximize reproductive fitness (Song et al., 2015). The LOV domain blue light photoreceptors, FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) and ZEITLUPE (ZTL), play important roles in seasonal flowering of
In contrast to the functional redundancy in the transcriptional regulation of
Although the roles of FKF1, GI, and ZTL in the photoperiodic flowering are known (Imaizumi et al., 2003; 2005; Kim et al., 2005; Lee et al., 2018; Sawa et al., 2007; Song et al., 2012; 2014; Takase et al., 2011), their relationships between functionalities and biochemical properties associated with the regulation of CO stability still remain underexplored. Given that the protein expression of FKF1, GI, and ZTL coincides in the afternoon (Kim et al., 2007; Sawa et al., 2007), the crucial timing for CO stabilization under the same conditions (Song et al., 2012; 2014), it is critical to understand how the activity of these positive and negative regulators of CO stability is modulated. Here, we demonstrate that GI influences the stability of FKF1 in the cytosol as well as in the nucleus in
All
To generate the
All plants including
For gene expression analysis, seedlings were grown on LS agar plates in long days and collected at every 4 h during the daytime from ZT0 on day 10. Ground plant tissues were used for RNA extraction using Higene Total RNA Prep Kit (BioFact, Korea), and 2 μg of total RNA was reverse-transcribed using DiaStar RT kit (SolGent, Korea) to synthesize cDNA. Methods for quantitative real-time polymerase chain reaction (qRT-PCR) and primer information for gene expression analysis of
To analyze protein expression of CO, FKF1, GI, and ZTL, 10-day-old plants, except the
Procedures for separation of the cytosolic and nuclei-enriched fractions and coimmunoprecipitation assays were previously described in Song et al. (2014). We performed coimmunoprecipitation experiments with slight modifications. Briefly,
The binding of ZTL to GI contributes to increased cytosolic retention of GI in
As the FKF1 translocation is not inhibited by ZTL function (Figs. 1C and 1D), we attempted to validate the interactions among FKF1, GI, and ZTL
FKF1 and ZTL bind to GI at similar times in the day (Kim et al., 2007; Sawa et al., 2007). As the GI binding is critical to the functional activities of FKF1 and ZTL, we further analyzed the spatial distribution and relative abundance of protein complexes in transgenic
CO is the main transcriptional activator of
FKF1 stabilizes CO whereas ZTL destabilizes it (Song et al., 2012; 2014). In long days, the protein abundance of FKF1 and ZTL peaks in the afternoon, when the CO protein level is also high. Because the FKF1-ZTL heterodimerization mainly exists in the nucleus (Fig. 2A), we hypothesized that ZTL restricts the FKF1-dependent CO stabilization in the afternoon by capturing FKF1 in the nucleus. In such a case, a reduction in CO protein levels is expected owing to the ZTL overproduction during the afternoon in long days. To validate this hypothesis, we constitutively expressed
All the three ZTL family members including FKF1 and LOV KELCH PROTEIN 2 (LKP2) interact with CO in yeast and
In order to understand day length-dependent flowering regulation, we aimed to determine functional relationships among the ZTL/LKP2/FKF1 and GI proteins that positively and negatively contribute to CO stability, which is closely related to the induction of florigen gene,
Light activating FKF1 facilitates CO stabilization in the afternoon by the physical interaction with CO and by the formation of a protein complex with CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), resulting in the inhibition of COP1 dimerization that targets CO for proteasome-dependent degradation (Lee et al., 2017; Song et al., 2012), albeit the involvement of GI in these FKF1 roles is still unknown. In contrast, ZTL binds to CO and mediates its degradation (Fig. 3B) (Song et al., 2014). The mode of action for the morning stabilization of CO in the
ZTL overexpression increases the cytosolic retention of GI (Kim et al., 2013). Our results show that GI preferentially binds to ZTL as compared to FKF1, and a substantial amount of GI-ZTL complex exists in the nucleus, although the majority of the complex is present in the cytosol (Figs. 2D and 2E). The overexpression of ZTL likely leads to a change in the ratio of GI-ZTL complex between the cytosol and the nucleus. With the depletion of functional FKF1 in the
Despite the distinct roles of the ZTL/LKP2/FKF1 family members and GI in the regulation of seasonal flowering and circadian clock, their diverged functions lead to complicated redundancy and antagonistic relationships (Kim et al., 2007; Lee et al., 2018; Sawa et al., 2007; Song et al., 2012; 2014; Takase et al., 2011). Here we report the evidence that GI conveys timing information for CO stabilization in the afternoon of long days by altering the ZTL-FKF1 complex in the nucleus (Fig. 4). This new regulatory mechanism provides an important clue to understand the functional complexity. Together with possible implications of GI function for the regulation of developmental age- and temperature-dependent flowering (Balasubramanian et al., 2006; Jung et al., 2007; Mishra and Panigrahi, 2015; Sawa and Kay, 2011; Song et al., 2013), the roles of GI in photoperiodic flowering comprise sophisticated mechanisms that enable plants to represent adaptive plastic adjustment for reproductive success.
This project was supported by the Next-Generation BioGreen 21 Program (SSAC, project No. PJ013386 to T.I. and Y.H.S., Rural Development Administration, Republic of Korea), the Ajou University Research Fund (to S.P. and Y.H.S.), NIH grant (GM079712 to T.I.), NSF grants (IOS-1656076 to T.I.), NRF grant (NRF-2018R1D1A1A09083990 to Y.H.S.), and the Nuclear R&D Program of the Ministry of Science and ICT (MSIT, Republic of Korea) (to S.L., S.S.L., and Y.H.S.).
The authors have no potential conflicts of interest to disclose.
Mol. Cells 2019; 42(10): 693-701
Published online October 31, 2019 https://doi.org/10.14348/molcells.2019.0199
Copyright © The Korean Society for Molecular and Cellular Biology.
Dae Yeon Hwang1, Sangkyu Park1, Sungbeom Lee2, Seung Sik Lee2,3, Takato Imaizumi4, and Young Hun Song1,*
1Department of Life Sciences, Ajou University, Suwon 16499, Korea, 2Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Korea, 3Department of Radiation Science and Technology, University of Science and Technology, Daejeon 34113, Korea, 4Department of Biology, University of Washington, Seattle, WA 98195, USA
Correspondence to:younghsong@ajou.ac.kr
This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/.
Plants monitor changes in day length to coordinate their flowering time with appropriate seasons. In
Keywords: CONSTANS, FKF1, flowering, GIGANTEA, ZEITLUPE
Many plants transit from the vegetative to reproductive phase in the most favorable season to maximize reproductive fitness (Song et al., 2015). The LOV domain blue light photoreceptors, FLAVIN-BINDING, KELCH REPEAT, F-BOX 1 (FKF1) and ZEITLUPE (ZTL), play important roles in seasonal flowering of
In contrast to the functional redundancy in the transcriptional regulation of
Although the roles of FKF1, GI, and ZTL in the photoperiodic flowering are known (Imaizumi et al., 2003; 2005; Kim et al., 2005; Lee et al., 2018; Sawa et al., 2007; Song et al., 2012; 2014; Takase et al., 2011), their relationships between functionalities and biochemical properties associated with the regulation of CO stability still remain underexplored. Given that the protein expression of FKF1, GI, and ZTL coincides in the afternoon (Kim et al., 2007; Sawa et al., 2007), the crucial timing for CO stabilization under the same conditions (Song et al., 2012; 2014), it is critical to understand how the activity of these positive and negative regulators of CO stability is modulated. Here, we demonstrate that GI influences the stability of FKF1 in the cytosol as well as in the nucleus in
All
To generate the
All plants including
For gene expression analysis, seedlings were grown on LS agar plates in long days and collected at every 4 h during the daytime from ZT0 on day 10. Ground plant tissues were used for RNA extraction using Higene Total RNA Prep Kit (BioFact, Korea), and 2 μg of total RNA was reverse-transcribed using DiaStar RT kit (SolGent, Korea) to synthesize cDNA. Methods for quantitative real-time polymerase chain reaction (qRT-PCR) and primer information for gene expression analysis of
To analyze protein expression of CO, FKF1, GI, and ZTL, 10-day-old plants, except the
Procedures for separation of the cytosolic and nuclei-enriched fractions and coimmunoprecipitation assays were previously described in Song et al. (2014). We performed coimmunoprecipitation experiments with slight modifications. Briefly,
The binding of ZTL to GI contributes to increased cytosolic retention of GI in
As the FKF1 translocation is not inhibited by ZTL function (Figs. 1C and 1D), we attempted to validate the interactions among FKF1, GI, and ZTL
FKF1 and ZTL bind to GI at similar times in the day (Kim et al., 2007; Sawa et al., 2007). As the GI binding is critical to the functional activities of FKF1 and ZTL, we further analyzed the spatial distribution and relative abundance of protein complexes in transgenic
CO is the main transcriptional activator of
FKF1 stabilizes CO whereas ZTL destabilizes it (Song et al., 2012; 2014). In long days, the protein abundance of FKF1 and ZTL peaks in the afternoon, when the CO protein level is also high. Because the FKF1-ZTL heterodimerization mainly exists in the nucleus (Fig. 2A), we hypothesized that ZTL restricts the FKF1-dependent CO stabilization in the afternoon by capturing FKF1 in the nucleus. In such a case, a reduction in CO protein levels is expected owing to the ZTL overproduction during the afternoon in long days. To validate this hypothesis, we constitutively expressed
All the three ZTL family members including FKF1 and LOV KELCH PROTEIN 2 (LKP2) interact with CO in yeast and
In order to understand day length-dependent flowering regulation, we aimed to determine functional relationships among the ZTL/LKP2/FKF1 and GI proteins that positively and negatively contribute to CO stability, which is closely related to the induction of florigen gene,
Light activating FKF1 facilitates CO stabilization in the afternoon by the physical interaction with CO and by the formation of a protein complex with CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), resulting in the inhibition of COP1 dimerization that targets CO for proteasome-dependent degradation (Lee et al., 2017; Song et al., 2012), albeit the involvement of GI in these FKF1 roles is still unknown. In contrast, ZTL binds to CO and mediates its degradation (Fig. 3B) (Song et al., 2014). The mode of action for the morning stabilization of CO in the
ZTL overexpression increases the cytosolic retention of GI (Kim et al., 2013). Our results show that GI preferentially binds to ZTL as compared to FKF1, and a substantial amount of GI-ZTL complex exists in the nucleus, although the majority of the complex is present in the cytosol (Figs. 2D and 2E). The overexpression of ZTL likely leads to a change in the ratio of GI-ZTL complex between the cytosol and the nucleus. With the depletion of functional FKF1 in the
Despite the distinct roles of the ZTL/LKP2/FKF1 family members and GI in the regulation of seasonal flowering and circadian clock, their diverged functions lead to complicated redundancy and antagonistic relationships (Kim et al., 2007; Lee et al., 2018; Sawa et al., 2007; Song et al., 2012; 2014; Takase et al., 2011). Here we report the evidence that GI conveys timing information for CO stabilization in the afternoon of long days by altering the ZTL-FKF1 complex in the nucleus (Fig. 4). This new regulatory mechanism provides an important clue to understand the functional complexity. Together with possible implications of GI function for the regulation of developmental age- and temperature-dependent flowering (Balasubramanian et al., 2006; Jung et al., 2007; Mishra and Panigrahi, 2015; Sawa and Kay, 2011; Song et al., 2013), the roles of GI in photoperiodic flowering comprise sophisticated mechanisms that enable plants to represent adaptive plastic adjustment for reproductive success.
This project was supported by the Next-Generation BioGreen 21 Program (SSAC, project No. PJ013386 to T.I. and Y.H.S., Rural Development Administration, Republic of Korea), the Ajou University Research Fund (to S.P. and Y.H.S.), NIH grant (GM079712 to T.I.), NSF grants (IOS-1656076 to T.I.), NRF grant (NRF-2018R1D1A1A09083990 to Y.H.S.), and the Nuclear R&D Program of the Ministry of Science and ICT (MSIT, Republic of Korea) (to S.L., S.S.L., and Y.H.S.).
The authors have no potential conflicts of interest to disclose.
Young Hun Song
Mol. Cells 2016; 39(10): 715-721 https://doi.org/10.14348/molcells.2016.0237Richa Pasriga, Jinmi Yoon, Lae-Hyeon Cho, and Gynheung An
Mol. Cells 2019; 42(5): 406-417 https://doi.org/10.14348/molcells.2019.0009Hee Jin Park, Woe-Yeon Kim, and Dae-Jin Yun
Mol. Cells 2016; 39(6): 447-459 https://doi.org/10.14348/molcells.2016.0083