TOP

Minireview

Split Viewer

Mol. Cells 2005; 19(2): 157-166

Published online January 1, 1970

© The Korean Society for Molecular and Cellular Biology

Recent Progress of Structural Biology of tRNA Processing and Modification

Kotaro Nakanishi, Osamu Nureki

Abstract

Transfer RNA (tRNA) is a key molecule to decode the genetic information on mRNA to amino aicds (protein), in a ribosome. For tRNA to fulfill its adopter function, tRNA should be processed into the standard length, and be post-transcriptionally modified. This modification step is essential for the tRNA to maintain the canonical L-shaped structure, which is required for the decoding function of tRNA. Otherwise, it has recently been proposed that modification procedure itself contributes to the RNA (re)folding, where the modification enzymes function as a kind of RNA chaperones. Recent genome analyses and post-genome (proteomics and transcriptomics) analyses have identified genes involved in the tRNA processings and modifications. Furthermore, post-genomic structural analysis has elucidated the structural basis for the tRNA maturation mechanism. In this paper, the recent progress of the structural biology of the tRNA processing and modification is reviewed.

Keywords Modification; Processing; tRNA

Article

Minireview

Mol. Cells 2005; 19(2): 157-166

Published online April 30, 2005

Copyright © The Korean Society for Molecular and Cellular Biology.

Recent Progress of Structural Biology of tRNA Processing and Modification

Kotaro Nakanishi, Osamu Nureki

Abstract

Transfer RNA (tRNA) is a key molecule to decode the genetic information on mRNA to amino aicds (protein), in a ribosome. For tRNA to fulfill its adopter function, tRNA should be processed into the standard length, and be post-transcriptionally modified. This modification step is essential for the tRNA to maintain the canonical L-shaped structure, which is required for the decoding function of tRNA. Otherwise, it has recently been proposed that modification procedure itself contributes to the RNA (re)folding, where the modification enzymes function as a kind of RNA chaperones. Recent genome analyses and post-genome (proteomics and transcriptomics) analyses have identified genes involved in the tRNA processings and modifications. Furthermore, post-genomic structural analysis has elucidated the structural basis for the tRNA maturation mechanism. In this paper, the recent progress of the structural biology of the tRNA processing and modification is reviewed.

Keywords: Modification, Processing, tRNA

Mol. Cells
Nov 30, 2023 Vol.46 No.11, pp. 655~725
COVER PICTURE
Kim et al. (pp. 710-724) demonstrated that a pathogen-derived Ralstonia pseudosolanacearum type III effector RipL delays flowering time and enhances susceptibility to bacterial infection in Arabidopsis thaliana. Shown is the RipL-expressing Arabidopsis plant, which displays general dampening of the transcriptional program during pathogen infection, grown in long-day conditions.

Share this article on

  • line

Molecules and Cells

eISSN 0219-1032
qr-code Download