Mol. Cells 2017; 40(10): 697-705
Published online October 17, 2017
https://doi.org/10.14348/molcells.2017.0192
© The Korean Society for Molecular and Cellular Biology
Correspondence to : *Correspondence: mckim@gnu.ac.kr
The maintenance of inorganic phosphate (Pi) homeostasis is essential for plant growth and yield. Plants have evolved strategies to cope with Pi starvation at the transcriptional, post-transcriptional, and post-translational levels, which maximizes its availability. Many transcription factors, miRNAs, and transporters participate in the Pi starvation signaling pathway where their activities are modulated by sugar and phytohormone signaling. Environmental stresses significantly affect the uptake and utilization of nutrients by plants, but their effects on the Pi starvation response remain unclear. Recently, we reported that Pi starvation signaling is affected by abiotic stresses such as salt, abscisic acid, and drought. In this review, we identified transcription factors, such as MYB, WRKY, and zinc finger transcription factors with functions in Pi starvation and other environmental stress signaling.
Keywords
The availability of inorganic phosphate (Pi) in soil is a crucial determinant of plant growth and development as well as crop productivity (Raghothama, 1999). Plants have evolved morphological, physiological, biochemical, and molecular processes to improve the mobilization, acquisition, and efficient utilization of Pi under deficiency conditions (Poirier and Bucher, 2002; Yuan and Liu, 2008). Reports on the mechanisms that regulate sensing and the response to Pi starvation have identified Pi starvation signaling pathway components and the cross-talk between Pi starvation responses and other plant signaling pathways, including sugars, phytohormones, and photosynthesis (Franco-Zorrilla et al., 2005; Lei et al., 2011a; Rouached et al., 2010; Rubio et al., 2009).
Cross-regulation occurs between Pi starvation and other plant signaling pathways, such as sugars and phytohormones (Rouached et al., 2010; Yuan and Liu, 2008). Pi starvation often causes sugar accumulation in plant tissues; high sugar levels in roots induce root system architecture (RSA) changes under Pi deprivation (Ciereszko et al., 2005; Hammond and White, 2008). Moreover, exogenous sucrose treatment increases the expression levels of Pi transporters and phosphate starvation–induced (
The signaling networks involved with plant responses to Pi starvation are well known, but the cross-talk between Pi starvation and other abiotic stress signaling pathways remains unclear. Recently, however, their cross-talk has been suggested in physiological, phenotypical, and molecular levels. In barley, heat stress affects the expression of
The transcription factors and
MYB transcription factors are associated with the signaling networks in various stress responses (Dubos et al., 2010; Franco-Zorrilla et al., 2004). Phosphate starvation response 1 (PHR1) is a representative MYB transcription factor in Pi starvation response (Rubio et al., 2001). PHR1 and PHR1-like (PHL) belong to the MYB-CC class and they directly bind to PHR1-binding site (P1BS; GNATATNC) or P1BS-like (AC/AATATT/CC) elements in the promoter regions of target genes during the Pi starvation stress (Table 1). PHR1 and PHLs regulate the transcription of Pi starvation response target genes, including
MYB2 functions as a transcriptional activator of ABA-dependent or ABA-independent genes under abiotic stress. MYB2 increases the transcriptional level of
WRKY transcription factors are involved in auto-regulation and cross-regulation by modulating plant transcriptional processes in multiple stress signaling pathways (Banerjee and Roychoudhury, 2015; Phukan et al., 2016). WRKY transcription factors with a C2H2 zinc finger domain control target gene transcription by binding to W box (TTGACT/C) elements (Chiou and Lin, 2011; Rushton et al., 2010). The WRKY6 transcription factor is a typical WRKY family member with roles in the responses to different stimuli, where it enhances the
WRKY6 negatively regulates
There are numerous other transcription factors that are important components of the transcriptional regulatory system of stress-responsive genes (Nakashima et al., 2009). C2H2-type zinc finger protein transcription factors function as essential components in Pi starvation and other abiotic stresses (Sakamoto et al., 2000). ZAT6 binds to three different sequences of POS9 (P-INO-specific regions) motifs in target gene promoters during developmental processes and the Pi starvation response (Table 1; Devaiah et al., 2007b; Meister et al., 2004).
Plants have diverse biological mechanisms for enhancing the availability of external Pi in the soil via Pi transporters (Chiou and Lin, 2011; Raghothama, 2000). Pi transporters are encoded by members of
Many microRNAs (miRNAs) such as
The expression of many Pi starvation-responsive genes is cross-regulated by Pi starvation and other stress signaling pathways. Plant phytohormones, such as cytokinin, ethylene, ABA, and auxin are associated with the transcription of genes involved in the Pi starvation response.
Phosphorus in the form of Pi is an essential nutrient for plant growth, development, and productivity, but Pi is one of the least available essential nutrients because of its insolubility and low available concentrations (Poirier and Bucher, 2002; Raghothama, 1999). To cope with Pi starvation, plants reprogram various cellular processes, including the reduction of internal Pi usage and activation of external Pi acquisition and recycling. Studies on Pi starvation signaling in plants have identified signaling components, such as transcription factors, non-coding RNAs, and protein modifiers, but also cross-talk with other plant signaling pathways including phytohormones, sugars, and other nutrients (e.g., iron) (Rouached et al., 2010; Yuan and Liu, 2008). Biotic and abiotic stresses significantly affect plant growth, but the links between Pi starvation and other environmental stress signaling pathways remain unclear. Understanding the cross-regulation of gene expression by identifying the transcription factors involved in both Pi starvation and diverse environmental stress signaling pathways, as well as
Transcription factors interconnecting Pi starvation and other stress-responsive signaling pathways in
Type of Factor | Transcription | Name | Locus | Binding Motif | Sequence | Responses | References |
---|---|---|---|---|---|---|---|
MYB Family | MYB-CC (R1-type) | PHR1 | At4g28610 | P1BS element (P1BS-like element) | GNATATNC (AC/AATATT/CC) | Pi starvation, metals deficiency, oxygen deficiency | Briat et al., 2015; Bustos et al., 2010; Khan et al., 2014; Klecker et al. 2014; Nilsson et al., 2007; Rubio et al. 2001 |
PHL1 | At5g29000 | Pi starvation | Bustos et al., 2010; Sun et al., 2016 | ||||
PHL2 | At3g24120 | Pi starvation | Sun et al., 2016 | ||||
PHL3 | At4g13640 | Pi starvation | Sun et al., 2016 | ||||
MYB-CC (R2R3-type) | MYB2 | At2g47190 | MBS | TAACTG | Pi starvation, cytokinin response, salt/ABA/drought response | Abe et al., 1997; 2003; Baek et al., 2013; Guo and Gan, 2011; Yoo et al., 2005 | |
MYB62 | At1g68320 | Pi starvation, GA deficiency | Devaiah et al., 2009 | ||||
WRKY | Family | WRKY6 | At1g62300 | W box | TTGACT/C | Pi starvation, pathogen defense, ABA response | Robatzek and Somssich, 2002; Chen et al., 2009; Huang et al., 2016 |
WRKY42 | At4g04450 | Pi starvation | Su et al., 2015 | ||||
WRKY45 | At3g01970 | Pi starvation | Wang et al., 2014c | ||||
WRKY75 | At5g13080 | Pi starvation, JA/SA response, pathogen defense | Chen et al., 2013; Devaiah et al., 2007a; Schmiesing et al., 2016 | ||||
ZFP family | Zinc Finger (C2H2-type) | ZAT6 | At5g04340 | POS9A POS9B and POS9C DRE | (GA)9 repeat TGTGAGAGA | Pi starvation, metals stress, salt/drought/osmotic stress response | Chen et al., 2016; Devaiah et al., 2007b; Liu et al., 2013; Nakashima and Yamaguchi-Shinozaki, 2006 |
Analysis of hormone signaling-related putative
Stress | Motif Name | Sequence | Gene Name (Number of sites in the promoter) | ||
---|---|---|---|---|---|
AtPTs | microRNAs | PSI | |||
Auxin | AuxRE | TGTCTCAATAAG | AtPht1;8(1) | miR2111a(1) | None |
AuxRR-core | GGTCCAT | AtPht1;9(1), AtPht4;1(1) | miR156g(2) | SPX1(1), LPR1(1) | |
TGA-element | AACGAC | AtPht1;4(2), AtPht1;7(2), AtPht3;1(1), AtPht3;2(1), AtPht4;1(1), AtPht4;5(1), AtPht4;6(1), AtPht5;2(1), AtPht5;3(1) | miR156c(2), miR156g(1), miR156h(1), miR2111a(1) | SPX4(2), PHR1(2), SCR(1), PAP2(1) | |
TGACGTAA | None | miR156b(1) | None | ||
TGA-box | TGACGTGGC | None | miR2111b(1) | None | |
Ethylene | ERE | ATTTCAAA | AtPht1;3(1), AtPht1;4(2), AtPht1;6(1), AtPht3;1(1), AtPht3;3(1), AtPht4;2(1) | miR156a(2), miR156b(1), miR156c(1), miR156e(2), miR2111b(1) | At4/IPS2(1), PAP2(1) |
GA | P-box | CCTTTTG | AtPht1;4(2), AtPht1;5(1), AtPht1;8(2), AtPht4;6(1) | miR156b(1), miR156c(1), miR2111a(2) | SPX2(1), PHR1(1), RNS1(1), At4/IPS2(2), PDR2(2), LPR2(1), SCR(1), BAH1(1) |
GCCTTTTGAGT | None | miR399d(1), miR399e(1) | IPS1(1) | ||
GARE-motif | TCTGTTG | AtPht1;2(1), AtPht1;4(1), AtPht1;5(1), AtPht1;7(1), AtPht1;8(1), AtPht1;9(1), AtPht3;2(2), AtPht4;5(1), AtPht4;6(1), AtPht5;2(2) | miR156b(1), miR156e(1), miR399b(1), miR399e(2), miR778a(1), miR827a(1) | SPX3(1), PHO2(1) | |
AAACAGA | AtPht1;1(1), AtPht1;3(1), AtPht1;4(1), AtPht1;7(3), AtPht1;8(2), AtPht1;9(2), AtPht3;1(1), AtPht4;1(1), AtPht4;2(1), AtPht4;6(1), AtPht5;1(1) | miR156c(2), miR156d(2), miR399b(1), miR399c(1), miR778a(2), miR827a(3) | PHR1(1), PHF1(2), PHO2(5), LPR2(2), SCR(3), BAH1(4) | ||
TATC-box | TATCCCA | AtPht4;1(2), AtPht4;5(1), AtPht5;3(1) | miR156e(1), miR156h(1), miR778a(1) | SPX3(1), BAH1(1) | |
JA | CGTCA-motif | CGTCA | AtPht1;1(1), AtPht1;4(2), AtPht1;5(2), AtPht1;6(2), AtPht1;7(3), AtPht1;9(2), AtPht3;1(1), AtPht3;2(4), AtPht3;3(3), AtPht4;1(2), AtPht4;2(1), AtPht4;3(1), AtPht4;4(2), AtPht4;5(2), AtPht4;6(1), AtPht5;3(1) | miR156b(3), miR156c(2), miR156d(1), miR156g(2), miR156h(4), miR399c(1), miR399d(1), miR399f(1), miR778a(3), miR827a(1), miR2111b(2) | SPX1(2), SPX3(1), SPX4(2), PHR1(2), PHF1(1), PHO1(2), PHO2(3),SIZ1(1), PDR2(2), LPR1(2), SCR(2), PAP2(2) |
TGACG-motif | TGACG | AtPht1;1(1), AtPht1;4(2), AtPht1;5(2), AtPht1;6(2), AtPht1;7(3), AtPht1;9(2), AtPht3;1(1), AtPht3;2(4), AtPht3;3(3), AtPht4;1(2), AtPht4;2(1), AtPht4;3(1), AtPht4;4(2), AtPht4;5(2), AtPht4;6(1), AtPht5;3(1) | miR156b(3), miR156c(2), miR156d(1), miR156g(2), miR156h(4), miR399c(1), miR399d(1), miR399f(1), miR778a(3), miR827a(1), miR2111b(2) | SPX1(2), SPX3(1), SPX4(2), PHR1(2), PHF1(1), PHO1(2), PHO2(3),SIZ1(1), PDR2(2), LPR1(2), SCR(2), PAP2(2) | |
SA | SARE | TTCGACCATCTT | AtPht3;3(1), AtPht5;3(1) | None | None |
TCA-element | CCATCTTTTT | AtPht1;4(1), AtPht2;1(1), AtPht3;1(1), AtPht4;6(2), AtPht5;1(1), AtPht5;3(2) | miR156c(1), miR156e(1), miR156f(1), miR399b(2), miR399c(1), miR2111b(1) | SPX1(1), SPX3(1), SPX4(1), PHO1(1), RNS1(3), IPS1(1), SIZ1(1), PDR2(1), SCR(3) | |
GAGAAGAATA | AtPht1;1(1), AtPht1;2(1), AtPht1;3(1), AtPht1;4(1), AtPht1;6(1), AtPht1;7(2), AtPht1;8(1), AtPht1;9(1), AtPht2;1(1), AtPht4;1(2), AtPht4;4(2), AtPht5;1(1), AtPht5;2(1), AtPht5;3(1) | miR156a(1), miR156d(1), miR156e(1), miR399c(1), miR827a(3), miR2111a(1), miR2111b(1) | SPX3(1), SCR(1), PAP2(1) | ||
CAGAAAAGGA | AtPht2;1(1), AtPht3;1(1), AtPht3;3(1), AtPht4;3(1) | miR156d(1) | LPR1(1), SCR(1) | ||
TCAGAAGAGG | AtPht1;4(1), AtPht2;1(1) | miR156e(1), miR2111b(1) | None |
Analysis of various stresses signaling-related putative
Stress | Motif Name Sequence | Gene Name (Number of sites in the promoter) | |||
---|---|---|---|---|---|
AtPTs | microRNAs | PSI | |||
ABA | ABRE | ACGTGGC | AtPht4;1(1), AtPht4;4(1) | miR2111b(1) | LPR1(1) |
AGTACGTGGC | None | miR399e(1) | None | ||
CACGTG | AtPht4;1(1), AtPht4;2(1), AtPht4;3(1), AtPht4;4(1), AtPht4;5(1) | miR156b(2), miR156c(1), miR156e(1), miR156h(1), miR399e(1), miR2111a(1) | SIZ1(1) | ||
CGCACGTGTC | None | miR2111a(1) | None | ||
GCAACGTGTC | AtPht5;1(1), AtPht5;3(1) | miR156d(1) | None | ||
GCCACGTACA | AtPht3;3(1) | None | None | ||
GCCGCGTGGC | AtPht4;1(1), AtPht4;2(1) | None | BAH1(1) | ||
TACGTG | AtPht1;1(1), AtPht1;2(1), AtPht1;3(1), AtPht3;2(1), AtPht3;3(1), AtPht4;1(1), AtPht4;2(1), AtPht4;4(1), AtPht4;6(1), AtPht5;1(1) | miR156a(1), miR156d(1), miR156h(1), miR399c(1) | SPX1(1), SPX3(1), PHR1(1), PHF1(1), PHO1(1), RNS1(3), IPS1(2), SIZ1(1), LPR10(1) | ||
TACGGTC | None | miR778a(1), miR827a(1) | SIZ1(1) | ||
CE3 | GACGCGTGTC | None | miR156h(1) | None | |
Drought | C-repeat/DRE | TGGCCGAC | AtPht1;9(1) | None | None |
MBS | CAACTG | AtPht1;8(1), AtPht3;2(1), AtPht4;2(1), AtPht5;1(1), AtPht5;3(1) | miR156e(1), miR399a(1), miR399c(1) | SPX2(1), PHO2(3), At4/IPS2(1), SCR(1), PAP2(2) | |
CGGTCA | AtPht1;4(1), AtPht4;5(1) | miR156h(1), miR399b(1), miR778a(1), miR827a(2) | SPX2(1), SPX3(1), PHO2(1) | ||
TAACTG | AtPht1;1(1), AtPht1;3(1), AtPht1;4(2), AtPht1;5(1), AtPht1;8(1), AtPht2;1(1), AtPht4;2(1), AtPht4;3(3) | miR399c(1), miR399d(2), miR399f(2) | SPX1(1), SPX2(4), PHO1(2), PHO2(2), LPR1(1), LPR2(1) | ||
Cold | LTR | CCGAAA | AtPht1;5(1), AtPht1;6(1), AtPht1;8(2), AtPht2;1(3), AtPht3;1(2), AtPht3;3(1), AtPht4;2(1), AtPht4;5(1), AtPht4;6(1), AtPht5;2(1) | miR156c(1), miR156d(1), miR156e(1), miR156f(1), miR156g(2), miR399d(1), miR399f(1), miR827a(1) | SPX1(2), SPX4(2), PHR1(1), PHO1(1), PHO2(1), SIZ1(2), PDR2(2), LPR2(1) |
Defense and stress | TC-rich repeats | ATTCTCTAAC | AtPht1;9(2), AtPht5;3(1) | miR156c(1), miR156e(1), miR156f(1), miR827a(1), miR2111a(1) | LPR2(1) |
ATTTTCTTCA | AtPht1;7(2), AtPht2;1(4), AtPht3;1(1), AtPht3;2(1), AtPht4;1(1), AtPht4;2(1), AtPht4;5(1), AtPht5;2(3), AtPht5;3(3) | miR156b(1), miR156f(1), miR156h(1), miR399b(1), miR399c(1), miR399d(1), miR399e(2) | SPX1(1), SPX2(2), SPX4(1), PHR1(2), At4/IPS2(1), SIZ1(1), PDR2(1), LPR2(1) | ||
ATTTTCTCCA | AtPht1;1(1), AtPht1;5(1), AtPht1;6(1), AtPht3;2(2), AtPht4;1(1), AtPht4;3(3), AtPht5;2(1) | miR778a(1) | PHR1(1), PHF1(1), LPR2(1) | ||
GTTTTCTTAC | AtPht1;2(1), AtPht1;3(1), AtPht1;4(1), AtPht1;6(1), AtPht1;7(1), AtPht4;3(1), AtPht5;2(1) | miR156c(1), miR156e(1), miR156h(1), miR399c(1), miR778a(2), miR2111b(1) | IPS1(1), At4/IPS2(2), SCR(2) | ||
Fungal | Box-W1 | TTGACC | AtPht1;1(2), AtPht1;3(1), AtPht1;6(1), AtPht1;9(1), AtPht3;1(3), AtPht3;3(1), AtPht4;3(1), AtPht4;4(2), AtPht4;6(1), AtPht5;3(1) | miR156c(2), miR156h(1), miR399a(1), miR399e(1), miR827a(1) | SPX1(1), SPX2(1), SPX3(1), SPX4(1), SCR(1), BAH1(1) |
Heat | HSE | AGAAAATTCG | AtPht1;7(2), AtPht3;2(1), AtPht5;1(1) | miR156b(1), miR156g(2), miR399a(1) | SPX2(3), SPX3(1), PDR2(1), LPR1(1), SCR(1) |
AAAAAATTTC | AtPht1;1(3), AtPht1;3(1), AtPht1;4(1), AtPht1;6(2), AtPht1;7(3), AtPht1;8(1), AtPht1;9(1), AtPht2;1(3), AtPht3;2(1), AtPht4;1(1), AtPht4;2(1), AtPht4;4(1) | miR156a(3), miR156b(1), miR156f(1), miR156g(1), miR399b(2), miR399c(1), miR778a(2), miR2111a(2) | SPX2(1), PHR1(1), PHF1(1), PHO1(2), RNS1(4), At4/IPS2(1), PDR2(2), LPR1(1), SCR(1) | ||
CNNGAANNTTCNNG | AtPht1;9(1) | None | None | ||
Wound | WUN-motif | TCATTACGAA | AtPht1;4(1), AtPht3;1(1), AtPht4;1(1), AtPht4;6(1) | miR399c(2) | SPX3(1), PHO1(1), BAH1(1), PAP2(1) |
Mol. Cells 2017; 40(10): 697-705
Published online October 31, 2017 https://doi.org/10.14348/molcells.2017.0192
Copyright © The Korean Society for Molecular and Cellular Biology.
Dongwon Baek1,4, Hyun Jin Chun2,4, Dae-Jin Yun3, and Min Chul Kim1,2,*
1Division of Applied Life Science (BK21 PLUS), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea, 2Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Korea, 3Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea
Correspondence to:*Correspondence: mckim@gnu.ac.kr
The maintenance of inorganic phosphate (Pi) homeostasis is essential for plant growth and yield. Plants have evolved strategies to cope with Pi starvation at the transcriptional, post-transcriptional, and post-translational levels, which maximizes its availability. Many transcription factors, miRNAs, and transporters participate in the Pi starvation signaling pathway where their activities are modulated by sugar and phytohormone signaling. Environmental stresses significantly affect the uptake and utilization of nutrients by plants, but their effects on the Pi starvation response remain unclear. Recently, we reported that Pi starvation signaling is affected by abiotic stresses such as salt, abscisic acid, and drought. In this review, we identified transcription factors, such as MYB, WRKY, and zinc finger transcription factors with functions in Pi starvation and other environmental stress signaling.
Keywords:
The availability of inorganic phosphate (Pi) in soil is a crucial determinant of plant growth and development as well as crop productivity (Raghothama, 1999). Plants have evolved morphological, physiological, biochemical, and molecular processes to improve the mobilization, acquisition, and efficient utilization of Pi under deficiency conditions (Poirier and Bucher, 2002; Yuan and Liu, 2008). Reports on the mechanisms that regulate sensing and the response to Pi starvation have identified Pi starvation signaling pathway components and the cross-talk between Pi starvation responses and other plant signaling pathways, including sugars, phytohormones, and photosynthesis (Franco-Zorrilla et al., 2005; Lei et al., 2011a; Rouached et al., 2010; Rubio et al., 2009).
Cross-regulation occurs between Pi starvation and other plant signaling pathways, such as sugars and phytohormones (Rouached et al., 2010; Yuan and Liu, 2008). Pi starvation often causes sugar accumulation in plant tissues; high sugar levels in roots induce root system architecture (RSA) changes under Pi deprivation (Ciereszko et al., 2005; Hammond and White, 2008). Moreover, exogenous sucrose treatment increases the expression levels of Pi transporters and phosphate starvation–induced (
The signaling networks involved with plant responses to Pi starvation are well known, but the cross-talk between Pi starvation and other abiotic stress signaling pathways remains unclear. Recently, however, their cross-talk has been suggested in physiological, phenotypical, and molecular levels. In barley, heat stress affects the expression of
The transcription factors and
MYB transcription factors are associated with the signaling networks in various stress responses (Dubos et al., 2010; Franco-Zorrilla et al., 2004). Phosphate starvation response 1 (PHR1) is a representative MYB transcription factor in Pi starvation response (Rubio et al., 2001). PHR1 and PHR1-like (PHL) belong to the MYB-CC class and they directly bind to PHR1-binding site (P1BS; GNATATNC) or P1BS-like (AC/AATATT/CC) elements in the promoter regions of target genes during the Pi starvation stress (Table 1). PHR1 and PHLs regulate the transcription of Pi starvation response target genes, including
MYB2 functions as a transcriptional activator of ABA-dependent or ABA-independent genes under abiotic stress. MYB2 increases the transcriptional level of
WRKY transcription factors are involved in auto-regulation and cross-regulation by modulating plant transcriptional processes in multiple stress signaling pathways (Banerjee and Roychoudhury, 2015; Phukan et al., 2016). WRKY transcription factors with a C2H2 zinc finger domain control target gene transcription by binding to W box (TTGACT/C) elements (Chiou and Lin, 2011; Rushton et al., 2010). The WRKY6 transcription factor is a typical WRKY family member with roles in the responses to different stimuli, where it enhances the
WRKY6 negatively regulates
There are numerous other transcription factors that are important components of the transcriptional regulatory system of stress-responsive genes (Nakashima et al., 2009). C2H2-type zinc finger protein transcription factors function as essential components in Pi starvation and other abiotic stresses (Sakamoto et al., 2000). ZAT6 binds to three different sequences of POS9 (P-INO-specific regions) motifs in target gene promoters during developmental processes and the Pi starvation response (Table 1; Devaiah et al., 2007b; Meister et al., 2004).
Plants have diverse biological mechanisms for enhancing the availability of external Pi in the soil via Pi transporters (Chiou and Lin, 2011; Raghothama, 2000). Pi transporters are encoded by members of
Many microRNAs (miRNAs) such as
The expression of many Pi starvation-responsive genes is cross-regulated by Pi starvation and other stress signaling pathways. Plant phytohormones, such as cytokinin, ethylene, ABA, and auxin are associated with the transcription of genes involved in the Pi starvation response.
Phosphorus in the form of Pi is an essential nutrient for plant growth, development, and productivity, but Pi is one of the least available essential nutrients because of its insolubility and low available concentrations (Poirier and Bucher, 2002; Raghothama, 1999). To cope with Pi starvation, plants reprogram various cellular processes, including the reduction of internal Pi usage and activation of external Pi acquisition and recycling. Studies on Pi starvation signaling in plants have identified signaling components, such as transcription factors, non-coding RNAs, and protein modifiers, but also cross-talk with other plant signaling pathways including phytohormones, sugars, and other nutrients (e.g., iron) (Rouached et al., 2010; Yuan and Liu, 2008). Biotic and abiotic stresses significantly affect plant growth, but the links between Pi starvation and other environmental stress signaling pathways remain unclear. Understanding the cross-regulation of gene expression by identifying the transcription factors involved in both Pi starvation and diverse environmental stress signaling pathways, as well as
. Transcription factors interconnecting Pi starvation and other stress-responsive signaling pathways in
Type of Factor | Transcription | Name | Locus | Binding Motif | Sequence | Responses | References |
---|---|---|---|---|---|---|---|
MYB Family | MYB-CC (R1-type) | PHR1 | At4g28610 | P1BS element (P1BS-like element) | GNATATNC (AC/AATATT/CC) | Pi starvation, metals deficiency, oxygen deficiency | Briat et al., 2015; Bustos et al., 2010; Khan et al., 2014; Klecker et al. 2014; Nilsson et al., 2007; Rubio et al. 2001 |
PHL1 | At5g29000 | Pi starvation | Bustos et al., 2010; Sun et al., 2016 | ||||
PHL2 | At3g24120 | Pi starvation | Sun et al., 2016 | ||||
PHL3 | At4g13640 | Pi starvation | Sun et al., 2016 | ||||
MYB-CC (R2R3-type) | MYB2 | At2g47190 | MBS | TAACTG | Pi starvation, cytokinin response, salt/ABA/drought response | Abe et al., 1997; 2003; Baek et al., 2013; Guo and Gan, 2011; Yoo et al., 2005 | |
MYB62 | At1g68320 | Pi starvation, GA deficiency | Devaiah et al., 2009 | ||||
WRKY | Family | WRKY6 | At1g62300 | W box | TTGACT/C | Pi starvation, pathogen defense, ABA response | Robatzek and Somssich, 2002; Chen et al., 2009; Huang et al., 2016 |
WRKY42 | At4g04450 | Pi starvation | Su et al., 2015 | ||||
WRKY45 | At3g01970 | Pi starvation | Wang et al., 2014c | ||||
WRKY75 | At5g13080 | Pi starvation, JA/SA response, pathogen defense | Chen et al., 2013; Devaiah et al., 2007a; Schmiesing et al., 2016 | ||||
ZFP family | Zinc Finger (C2H2-type) | ZAT6 | At5g04340 | POS9A POS9B and POS9C DRE | (GA)9 repeat TGTGAGAGA | Pi starvation, metals stress, salt/drought/osmotic stress response | Chen et al., 2016; Devaiah et al., 2007b; Liu et al., 2013; Nakashima and Yamaguchi-Shinozaki, 2006 |
. Analysis of hormone signaling-related putative
Stress | Motif Name | Sequence | Gene Name (Number of sites in the promoter) | ||
---|---|---|---|---|---|
AtPTs | microRNAs | PSI | |||
Auxin | AuxRE | TGTCTCAATAAG | AtPht1;8(1) | miR2111a(1) | None |
AuxRR-core | GGTCCAT | AtPht1;9(1), AtPht4;1(1) | miR156g(2) | SPX1(1), LPR1(1) | |
TGA-element | AACGAC | AtPht1;4(2), AtPht1;7(2), AtPht3;1(1), AtPht3;2(1), AtPht4;1(1), AtPht4;5(1), AtPht4;6(1), AtPht5;2(1), AtPht5;3(1) | miR156c(2), miR156g(1), miR156h(1), miR2111a(1) | SPX4(2), PHR1(2), SCR(1), PAP2(1) | |
TGACGTAA | None | miR156b(1) | None | ||
TGA-box | TGACGTGGC | None | miR2111b(1) | None | |
Ethylene | ERE | ATTTCAAA | AtPht1;3(1), AtPht1;4(2), AtPht1;6(1), AtPht3;1(1), AtPht3;3(1), AtPht4;2(1) | miR156a(2), miR156b(1), miR156c(1), miR156e(2), miR2111b(1) | At4/IPS2(1), PAP2(1) |
GA | P-box | CCTTTTG | AtPht1;4(2), AtPht1;5(1), AtPht1;8(2), AtPht4;6(1) | miR156b(1), miR156c(1), miR2111a(2) | SPX2(1), PHR1(1), RNS1(1), At4/IPS2(2), PDR2(2), LPR2(1), SCR(1), BAH1(1) |
GCCTTTTGAGT | None | miR399d(1), miR399e(1) | IPS1(1) | ||
GARE-motif | TCTGTTG | AtPht1;2(1), AtPht1;4(1), AtPht1;5(1), AtPht1;7(1), AtPht1;8(1), AtPht1;9(1), AtPht3;2(2), AtPht4;5(1), AtPht4;6(1), AtPht5;2(2) | miR156b(1), miR156e(1), miR399b(1), miR399e(2), miR778a(1), miR827a(1) | SPX3(1), PHO2(1) | |
AAACAGA | AtPht1;1(1), AtPht1;3(1), AtPht1;4(1), AtPht1;7(3), AtPht1;8(2), AtPht1;9(2), AtPht3;1(1), AtPht4;1(1), AtPht4;2(1), AtPht4;6(1), AtPht5;1(1) | miR156c(2), miR156d(2), miR399b(1), miR399c(1), miR778a(2), miR827a(3) | PHR1(1), PHF1(2), PHO2(5), LPR2(2), SCR(3), BAH1(4) | ||
TATC-box | TATCCCA | AtPht4;1(2), AtPht4;5(1), AtPht5;3(1) | miR156e(1), miR156h(1), miR778a(1) | SPX3(1), BAH1(1) | |
JA | CGTCA-motif | CGTCA | AtPht1;1(1), AtPht1;4(2), AtPht1;5(2), AtPht1;6(2), AtPht1;7(3), AtPht1;9(2), AtPht3;1(1), AtPht3;2(4), AtPht3;3(3), AtPht4;1(2), AtPht4;2(1), AtPht4;3(1), AtPht4;4(2), AtPht4;5(2), AtPht4;6(1), AtPht5;3(1) | miR156b(3), miR156c(2), miR156d(1), miR156g(2), miR156h(4), miR399c(1), miR399d(1), miR399f(1), miR778a(3), miR827a(1), miR2111b(2) | SPX1(2), SPX3(1), SPX4(2), PHR1(2), PHF1(1), PHO1(2), PHO2(3),SIZ1(1), PDR2(2), LPR1(2), SCR(2), PAP2(2) |
TGACG-motif | TGACG | AtPht1;1(1), AtPht1;4(2), AtPht1;5(2), AtPht1;6(2), AtPht1;7(3), AtPht1;9(2), AtPht3;1(1), AtPht3;2(4), AtPht3;3(3), AtPht4;1(2), AtPht4;2(1), AtPht4;3(1), AtPht4;4(2), AtPht4;5(2), AtPht4;6(1), AtPht5;3(1) | miR156b(3), miR156c(2), miR156d(1), miR156g(2), miR156h(4), miR399c(1), miR399d(1), miR399f(1), miR778a(3), miR827a(1), miR2111b(2) | SPX1(2), SPX3(1), SPX4(2), PHR1(2), PHF1(1), PHO1(2), PHO2(3),SIZ1(1), PDR2(2), LPR1(2), SCR(2), PAP2(2) | |
SA | SARE | TTCGACCATCTT | AtPht3;3(1), AtPht5;3(1) | None | None |
TCA-element | CCATCTTTTT | AtPht1;4(1), AtPht2;1(1), AtPht3;1(1), AtPht4;6(2), AtPht5;1(1), AtPht5;3(2) | miR156c(1), miR156e(1), miR156f(1), miR399b(2), miR399c(1), miR2111b(1) | SPX1(1), SPX3(1), SPX4(1), PHO1(1), RNS1(3), IPS1(1), SIZ1(1), PDR2(1), SCR(3) | |
GAGAAGAATA | AtPht1;1(1), AtPht1;2(1), AtPht1;3(1), AtPht1;4(1), AtPht1;6(1), AtPht1;7(2), AtPht1;8(1), AtPht1;9(1), AtPht2;1(1), AtPht4;1(2), AtPht4;4(2), AtPht5;1(1), AtPht5;2(1), AtPht5;3(1) | miR156a(1), miR156d(1), miR156e(1), miR399c(1), miR827a(3), miR2111a(1), miR2111b(1) | SPX3(1), SCR(1), PAP2(1) | ||
CAGAAAAGGA | AtPht2;1(1), AtPht3;1(1), AtPht3;3(1), AtPht4;3(1) | miR156d(1) | LPR1(1), SCR(1) | ||
TCAGAAGAGG | AtPht1;4(1), AtPht2;1(1) | miR156e(1), miR2111b(1) | None |
. Analysis of various stresses signaling-related putative
Stress | Motif Name Sequence | Gene Name (Number of sites in the promoter) | |||
---|---|---|---|---|---|
AtPTs | microRNAs | PSI | |||
ABA | ABRE | ACGTGGC | AtPht4;1(1), AtPht4;4(1) | miR2111b(1) | LPR1(1) |
AGTACGTGGC | None | miR399e(1) | None | ||
CACGTG | AtPht4;1(1), AtPht4;2(1), AtPht4;3(1), AtPht4;4(1), AtPht4;5(1) | miR156b(2), miR156c(1), miR156e(1), miR156h(1), miR399e(1), miR2111a(1) | SIZ1(1) | ||
CGCACGTGTC | None | miR2111a(1) | None | ||
GCAACGTGTC | AtPht5;1(1), AtPht5;3(1) | miR156d(1) | None | ||
GCCACGTACA | AtPht3;3(1) | None | None | ||
GCCGCGTGGC | AtPht4;1(1), AtPht4;2(1) | None | BAH1(1) | ||
TACGTG | AtPht1;1(1), AtPht1;2(1), AtPht1;3(1), AtPht3;2(1), AtPht3;3(1), AtPht4;1(1), AtPht4;2(1), AtPht4;4(1), AtPht4;6(1), AtPht5;1(1) | miR156a(1), miR156d(1), miR156h(1), miR399c(1) | SPX1(1), SPX3(1), PHR1(1), PHF1(1), PHO1(1), RNS1(3), IPS1(2), SIZ1(1), LPR10(1) | ||
TACGGTC | None | miR778a(1), miR827a(1) | SIZ1(1) | ||
CE3 | GACGCGTGTC | None | miR156h(1) | None | |
Drought | C-repeat/DRE | TGGCCGAC | AtPht1;9(1) | None | None |
MBS | CAACTG | AtPht1;8(1), AtPht3;2(1), AtPht4;2(1), AtPht5;1(1), AtPht5;3(1) | miR156e(1), miR399a(1), miR399c(1) | SPX2(1), PHO2(3), At4/IPS2(1), SCR(1), PAP2(2) | |
CGGTCA | AtPht1;4(1), AtPht4;5(1) | miR156h(1), miR399b(1), miR778a(1), miR827a(2) | SPX2(1), SPX3(1), PHO2(1) | ||
TAACTG | AtPht1;1(1), AtPht1;3(1), AtPht1;4(2), AtPht1;5(1), AtPht1;8(1), AtPht2;1(1), AtPht4;2(1), AtPht4;3(3) | miR399c(1), miR399d(2), miR399f(2) | SPX1(1), SPX2(4), PHO1(2), PHO2(2), LPR1(1), LPR2(1) | ||
Cold | LTR | CCGAAA | AtPht1;5(1), AtPht1;6(1), AtPht1;8(2), AtPht2;1(3), AtPht3;1(2), AtPht3;3(1), AtPht4;2(1), AtPht4;5(1), AtPht4;6(1), AtPht5;2(1) | miR156c(1), miR156d(1), miR156e(1), miR156f(1), miR156g(2), miR399d(1), miR399f(1), miR827a(1) | SPX1(2), SPX4(2), PHR1(1), PHO1(1), PHO2(1), SIZ1(2), PDR2(2), LPR2(1) |
Defense and stress | TC-rich repeats | ATTCTCTAAC | AtPht1;9(2), AtPht5;3(1) | miR156c(1), miR156e(1), miR156f(1), miR827a(1), miR2111a(1) | LPR2(1) |
ATTTTCTTCA | AtPht1;7(2), AtPht2;1(4), AtPht3;1(1), AtPht3;2(1), AtPht4;1(1), AtPht4;2(1), AtPht4;5(1), AtPht5;2(3), AtPht5;3(3) | miR156b(1), miR156f(1), miR156h(1), miR399b(1), miR399c(1), miR399d(1), miR399e(2) | SPX1(1), SPX2(2), SPX4(1), PHR1(2), At4/IPS2(1), SIZ1(1), PDR2(1), LPR2(1) | ||
ATTTTCTCCA | AtPht1;1(1), AtPht1;5(1), AtPht1;6(1), AtPht3;2(2), AtPht4;1(1), AtPht4;3(3), AtPht5;2(1) | miR778a(1) | PHR1(1), PHF1(1), LPR2(1) | ||
GTTTTCTTAC | AtPht1;2(1), AtPht1;3(1), AtPht1;4(1), AtPht1;6(1), AtPht1;7(1), AtPht4;3(1), AtPht5;2(1) | miR156c(1), miR156e(1), miR156h(1), miR399c(1), miR778a(2), miR2111b(1) | IPS1(1), At4/IPS2(2), SCR(2) | ||
Fungal | Box-W1 | TTGACC | AtPht1;1(2), AtPht1;3(1), AtPht1;6(1), AtPht1;9(1), AtPht3;1(3), AtPht3;3(1), AtPht4;3(1), AtPht4;4(2), AtPht4;6(1), AtPht5;3(1) | miR156c(2), miR156h(1), miR399a(1), miR399e(1), miR827a(1) | SPX1(1), SPX2(1), SPX3(1), SPX4(1), SCR(1), BAH1(1) |
Heat | HSE | AGAAAATTCG | AtPht1;7(2), AtPht3;2(1), AtPht5;1(1) | miR156b(1), miR156g(2), miR399a(1) | SPX2(3), SPX3(1), PDR2(1), LPR1(1), SCR(1) |
AAAAAATTTC | AtPht1;1(3), AtPht1;3(1), AtPht1;4(1), AtPht1;6(2), AtPht1;7(3), AtPht1;8(1), AtPht1;9(1), AtPht2;1(3), AtPht3;2(1), AtPht4;1(1), AtPht4;2(1), AtPht4;4(1) | miR156a(3), miR156b(1), miR156f(1), miR156g(1), miR399b(2), miR399c(1), miR778a(2), miR2111a(2) | SPX2(1), PHR1(1), PHF1(1), PHO1(2), RNS1(4), At4/IPS2(1), PDR2(2), LPR1(1), SCR(1) | ||
CNNGAANNTTCNNG | AtPht1;9(1) | None | None | ||
Wound | WUN-motif | TCATTACGAA | AtPht1;4(1), AtPht3;1(1), AtPht4;1(1), AtPht4;6(1) | miR399c(2) | SPX3(1), PHO1(1), BAH1(1), PAP2(1) |
Hyeonseo Hwang, Hee Ryung Chang, and Daehyun Baek
Mol. Cells 2023; 46(1): 21-32 https://doi.org/10.14348/molcells.2023.2157Chaehwan Oh, Dahyeon Koh, Hyeong Bin Jeon, and Kyoung Mi Kim
Mol. Cells 2022; 45(9): 603-609 https://doi.org/10.14348/molcells.2022.0056Woo Ryung Kim, Eun Gyung Park, Kyung-Won Kang, Sang-Myeong Lee, Bumseok Kim, and Heui-Soo Kim
Mol. Cells 2020; 43(11): 953-963 https://doi.org/10.14348/molcells.2020.0177