Mol. Cells 2016; 39(2): 156-162
Published online December 15, 2015
https://doi.org/10.14348/molcells.2016.2291
© The Korean Society for Molecular and Cellular Biology
Correspondence to : *Correspondence: kwanglee@chonnam.ac.kr
Estrogen receptor α (ER-α), which is involved in bone metabolism and breast cancer, has been shown to have transcriptional targets. Dlx3 is essential for the skeletal development and plays an important role in osteoblast differentiation. Various osteogenic stimulators and transcription factors can induce the protein expression of Dlx3. However, the regulatory function of ER-α in the Dlx3 mediated osteogenic process remains unknown. Therefore, we investigated the regulation of Dlx3 and found that ER-α is a positive regulator of Dlx3 transcription in BMP2-induced osteoblast differentiation. We also found that ER-α interacts with Dlx3 and increases its transcriptional activity and DNA binding affinity. Furthermore, we demonstrated that the regulation of Dlx3 activity by ER-α is independent of the ligand (estradiol) binding domain. These results indicate that Dlx3 is a novel target of ER-α, and that ER-α regulates the osteoblast differentiation through modulation of Dlx3 expression and/or interaction with Dlx3.
Keywords Dlx3, estrogen receptor α, osteoblast differentiation
The Distal-less (Dlx) family is composed of six members, Dlx1-Dlx6, and they have a highly conserved homeobox domain related to that of Distal-less (Dll) in Drosophila (
Estrogen signaling in bone occurs mainly through two estrogen receptors, estrogen receptor alpha (ER-α) and ER-β. Although both receptors are important in bone physiology and development, a point mutation in ER-α caused unfused growth plates and osteoporosis (
Recent studies suggest that ER-α in osteoblast associates with and regulates the activity of transcription factors or signal transduction pathways (
In this study, we examined the functional role of ER-α in Dlx3 modulation. We found that ER-α increases BMP-2-induced osteoblast differentiation. In addition, ER-α interacts with Dlx3 and increases the transcriptional activity of Dlx3 in a ligand-independent manner. We also found that ER-α increases the DNA binding affinity of Dlx3. Collectively, our results indicate that ER-α-induced Dlx3 activity may induce the osteoblast differentiation in a ligand independent manner.
Estradiol (E2) was purchased from Sigma-Aldrich. Antibodies against the following epitopes were used: Myc (9E10) and HA (12CA5) from Roche Applied Science (Germany), GFP (G1544) from Santa Cruz Biotechnology (USA), and α-Tubulin (B-5-1-2) from Sigma-Aldrich (USA).
C2C12 mouse myoblast cells and HEK293 cells were maintained in DMEM containing 10% heat-inactivated FBS and antibiotic-antimycotic solution at 37°C in a humidified atmosphere of 5% CO2. DMEM, FBS, and antibiotic-antimycotic solution were purchased from Life Technologies (USA).
The N-terminal epitope-tagged human Dlx3 expression plasmids were constructed in a CMV promoter-derived mammalian expression vector (pCS4). The HA-tagged full length-ER-α and ER-α-ΔLBD were kindly provided by Dr. Keesook Lee (Chonnam National University, Korea). The polyethyleneimine (PEI) (Polysciences Inc., USA)-mediated method was used for transient transfection. Total amounts of transfected plasmids in each condition were equalized with an empty vector.
HEK293 cells were co-transfected with the indicated plasmids and then lysed with an ice cold lysis buffer previously described (
Total RNA was extracted from C2C12 cells with the use of RNAiso Plus (Takara Bio Inc., Japan) according to the manufacturer’s instructions. Random-primed cDNAs were synthesized from 1 μg of total RNA by using the GoScript Reverse Transcription System (Promega, USA). The following conditions were used for PCR: initial denaturation at 94°C for 5 min, 25?30 cycles of denaturation at 94°C for 1 min, annealing at a temperature optimized for each primer pair for 1 min, extension at 72°C for 1 min, and a final extension at 72°C for 10 min. The primer sequences used are as follows: mouse Bone sialoprotein (BSP) forward 5′-ACA CTT ACC GAG CTT ATG AGG-3′ and reverse 5′-TTG CGC AGT TAG CAA TAG CAC-3′ (
Luciferase reporter assays were conducted using alkaline phosphatase (ALP) promoter reporter, BSP promoter reporter, Dlx-response element (DRE) reporter, and estrogen-response element (ERE) reporter plasmids. HEK293 cells were transfected with the indicated plasmids and reporter plasmids, and pCMV-β-gal for 36 h. All the luciferase assays were performed using a Luciferase Reporter Assay Kit (Promega). Data were normalized by corresponding β-galactosidase activity to compensate for transfection efficiency.
C2C12 cells were transfected and then stimulated with BMP2 (10 ng/ml) for 3 days. Cells were fixed with 4% paraformaldehyde (Sigma-Aldrich) for 10 min and stained with 300 μg/ml BCIP/NBT solution (Sigma-Aldrich) for 15 min at room temperature. ALP-positive cells were stained a blue/purple color.
The DNA binding assay was performed by mixing whole cell lysates with a biotinylated oligomers containing three tandem repeats of the Dlx3-responsive element, and the DNA-protein complexes were precipitated using streptavidin-coated beads. The binding proteins were eluted using loading buffer and resolved using 12% SDS-PAGE followed by IB. The following biotinylated DRE sequences were used: DRE forward 5′-biotin-GCG ATA ATT GCG GCG ATA ATT GCG GCG ATA ATT GCG-3′ and reverse 5′-biotin-CGC AAT TAT CGC CGC AAT TAT CGC CGC AAT TAT CGC-3′ (
The data are representative of three independent experiments.
The Results are expressed as means ± standard error of the mean. Analyses were performed with Student’s
First, we examined the effect of ER-α on Dlx3-driven induction of osteoblast differentiation. C2C12 cells were transfected with Dlx3 and ER-α and then treated with BMP2. ALP staining showed that ER-α increases Dlx3-induced activation of osteoblast differentiation (Fig. 1A). Next, we examined whether ER-α affects the expression of osteogenic marker genes. ER-α increased the expression of BSP, and COL1A1 and co-transfection of Dlx3 and ER-α further increased their expression (Fig. 1B). We also examined the effects of ER-α on the transcriptional activities of Dlx3-induced activation of ALP and BSP promoter reporter genes. C2C12 cells were transfected with ALP-Luc and BSP-Luc along with combinations of Dlx3 and ER-α. Dlx3 alone increased the ALP-Luc and BSP-Luc activity, which was further enhanced by ER-α (Fig. 1C). Collectively, these results indicate that ER-α plays a positive role in osteoblast differentiation and reinforces the Dlx3-induced activation of osteoblast differentiation.
To determine whether a physical interaction between Dlx3 and ER-α affected BMP2-induced osteoblast differentiation, HEK293 cells were transfected with Myc-Dlx3 and HA-ER-α, followed by IP and IB. Additionally, HEK293 cells were transfected with HA-ER-α and GFP-Dlx3 and then analyzed using IP and IB. These experiments showed that Dlx3 was bound to ER-α (Figs. 2A and 2B). To determine whether ER-α can regulate the transcriptional activity of Dlx3, HEK293 cells were transfected with a DRE-Luc reporter gene with different combinations of Dlx3 and ER-α. Dlx3 by itself increased reporter activity compared to control group, and co-transfection with ER-α further increased reporter activity in a dose-dependent manner (Fig. 2C). To determine whether its regulation is related to the ligand, we treated the cells with E2. However, the transcriptional activity of Dlx3 was not influenced by E2 (Fig. 2D). Since the nature of the interactions between Dlx3 and ER-α predicted that they might also regulate each other, next we examined whether Dlx3 can affect ER-transcriptional activity. HEK293 cells were transfected an ERE-Luc with different combinations of Dlx3 and ER-α and then treated with E2 for 12 h. We found that Dlx3 had no effect on ER-α-dependent reporter gene activity (Fig. 2E). These results suggest that ER-α interacts with Dlx3 and increases its transcriptional activity.
To determine whether the regulation of Dlx3 by ER-α is independent of the ligand (E2), we fragmented ER-α based on the characteristics in the previous report (
As ER-α interacts with Dlx3, we examined whether ER-α has an effect on Dlx3 binding to DRE in experiments using a DAPA assay, in which short biotinylated DNA probes containing the DRE sequences were hybridized with nuclear proteins obtained from HEK293 cells transfected with combinations of Dlx3 and ER-α-FL or ER-α-ΔLBD. We found that both ER-α-FL and ER-α-ΔLBD induced efficient Dlx3 association with the DRE motif (Figs. 4A and 4B). These results imply that ER-α increases the affinity of Dlx3 for the DRE sequence in a ligand-independent manner.
Estrogen is an important hormone for bone development, growth, and metabolism. Although many studies have focused on estrogen as an inhibitor of bone resorption, others suggest additional effects on bone formation. Estrogen may act in part on osteoblasts to inhibit apoptosis (
Recent studies show that unliganded ER-α regulates various cell signaling and the expressions of target genes. Unliganded ER-α is required for the osteogenic response to mechanical loading in a ligand-independent manner (
The internal structure of the ER contains six distinct regions which are labeled A through F as shown in Fig. 3A. The N-terminal region (A/B) contains activation function 1 (AF-1) which is responsible for constitutive ligand-independent activation of the receptor (
In conclusion, as shown in Fig. 5, we have found that unliganded ER-α physically interacts with Dlx3
Mol. Cells 2016; 39(2): 156-162
Published online February 29, 2016 https://doi.org/10.14348/molcells.2016.2291
Copyright © The Korean Society for Molecular and Cellular Biology.
Sung Ho Lee1,2, Kyo-Nyeo Oh1,2, Younho Han1, You Hee Choi1, and Kwang-Youl Lee1,*
1College of Pharmacy and Research Institute of Drug Development, Chonnam National University, Gwangju 500-757, Korea, 2These authors contributed equally to this work.
Correspondence to:*Correspondence: kwanglee@chonnam.ac.kr
Estrogen receptor α (ER-α), which is involved in bone metabolism and breast cancer, has been shown to have transcriptional targets. Dlx3 is essential for the skeletal development and plays an important role in osteoblast differentiation. Various osteogenic stimulators and transcription factors can induce the protein expression of Dlx3. However, the regulatory function of ER-α in the Dlx3 mediated osteogenic process remains unknown. Therefore, we investigated the regulation of Dlx3 and found that ER-α is a positive regulator of Dlx3 transcription in BMP2-induced osteoblast differentiation. We also found that ER-α interacts with Dlx3 and increases its transcriptional activity and DNA binding affinity. Furthermore, we demonstrated that the regulation of Dlx3 activity by ER-α is independent of the ligand (estradiol) binding domain. These results indicate that Dlx3 is a novel target of ER-α, and that ER-α regulates the osteoblast differentiation through modulation of Dlx3 expression and/or interaction with Dlx3.
Keywords: Dlx3, estrogen receptor α, osteoblast differentiation
The Distal-less (Dlx) family is composed of six members, Dlx1-Dlx6, and they have a highly conserved homeobox domain related to that of Distal-less (Dll) in Drosophila (
Estrogen signaling in bone occurs mainly through two estrogen receptors, estrogen receptor alpha (ER-α) and ER-β. Although both receptors are important in bone physiology and development, a point mutation in ER-α caused unfused growth plates and osteoporosis (
Recent studies suggest that ER-α in osteoblast associates with and regulates the activity of transcription factors or signal transduction pathways (
In this study, we examined the functional role of ER-α in Dlx3 modulation. We found that ER-α increases BMP-2-induced osteoblast differentiation. In addition, ER-α interacts with Dlx3 and increases the transcriptional activity of Dlx3 in a ligand-independent manner. We also found that ER-α increases the DNA binding affinity of Dlx3. Collectively, our results indicate that ER-α-induced Dlx3 activity may induce the osteoblast differentiation in a ligand independent manner.
Estradiol (E2) was purchased from Sigma-Aldrich. Antibodies against the following epitopes were used: Myc (9E10) and HA (12CA5) from Roche Applied Science (Germany), GFP (G1544) from Santa Cruz Biotechnology (USA), and α-Tubulin (B-5-1-2) from Sigma-Aldrich (USA).
C2C12 mouse myoblast cells and HEK293 cells were maintained in DMEM containing 10% heat-inactivated FBS and antibiotic-antimycotic solution at 37°C in a humidified atmosphere of 5% CO2. DMEM, FBS, and antibiotic-antimycotic solution were purchased from Life Technologies (USA).
The N-terminal epitope-tagged human Dlx3 expression plasmids were constructed in a CMV promoter-derived mammalian expression vector (pCS4). The HA-tagged full length-ER-α and ER-α-ΔLBD were kindly provided by Dr. Keesook Lee (Chonnam National University, Korea). The polyethyleneimine (PEI) (Polysciences Inc., USA)-mediated method was used for transient transfection. Total amounts of transfected plasmids in each condition were equalized with an empty vector.
HEK293 cells were co-transfected with the indicated plasmids and then lysed with an ice cold lysis buffer previously described (
Total RNA was extracted from C2C12 cells with the use of RNAiso Plus (Takara Bio Inc., Japan) according to the manufacturer’s instructions. Random-primed cDNAs were synthesized from 1 μg of total RNA by using the GoScript Reverse Transcription System (Promega, USA). The following conditions were used for PCR: initial denaturation at 94°C for 5 min, 25?30 cycles of denaturation at 94°C for 1 min, annealing at a temperature optimized for each primer pair for 1 min, extension at 72°C for 1 min, and a final extension at 72°C for 10 min. The primer sequences used are as follows: mouse Bone sialoprotein (BSP) forward 5′-ACA CTT ACC GAG CTT ATG AGG-3′ and reverse 5′-TTG CGC AGT TAG CAA TAG CAC-3′ (
Luciferase reporter assays were conducted using alkaline phosphatase (ALP) promoter reporter, BSP promoter reporter, Dlx-response element (DRE) reporter, and estrogen-response element (ERE) reporter plasmids. HEK293 cells were transfected with the indicated plasmids and reporter plasmids, and pCMV-β-gal for 36 h. All the luciferase assays were performed using a Luciferase Reporter Assay Kit (Promega). Data were normalized by corresponding β-galactosidase activity to compensate for transfection efficiency.
C2C12 cells were transfected and then stimulated with BMP2 (10 ng/ml) for 3 days. Cells were fixed with 4% paraformaldehyde (Sigma-Aldrich) for 10 min and stained with 300 μg/ml BCIP/NBT solution (Sigma-Aldrich) for 15 min at room temperature. ALP-positive cells were stained a blue/purple color.
The DNA binding assay was performed by mixing whole cell lysates with a biotinylated oligomers containing three tandem repeats of the Dlx3-responsive element, and the DNA-protein complexes were precipitated using streptavidin-coated beads. The binding proteins were eluted using loading buffer and resolved using 12% SDS-PAGE followed by IB. The following biotinylated DRE sequences were used: DRE forward 5′-biotin-GCG ATA ATT GCG GCG ATA ATT GCG GCG ATA ATT GCG-3′ and reverse 5′-biotin-CGC AAT TAT CGC CGC AAT TAT CGC CGC AAT TAT CGC-3′ (
The data are representative of three independent experiments.
The Results are expressed as means ± standard error of the mean. Analyses were performed with Student’s
First, we examined the effect of ER-α on Dlx3-driven induction of osteoblast differentiation. C2C12 cells were transfected with Dlx3 and ER-α and then treated with BMP2. ALP staining showed that ER-α increases Dlx3-induced activation of osteoblast differentiation (Fig. 1A). Next, we examined whether ER-α affects the expression of osteogenic marker genes. ER-α increased the expression of BSP, and COL1A1 and co-transfection of Dlx3 and ER-α further increased their expression (Fig. 1B). We also examined the effects of ER-α on the transcriptional activities of Dlx3-induced activation of ALP and BSP promoter reporter genes. C2C12 cells were transfected with ALP-Luc and BSP-Luc along with combinations of Dlx3 and ER-α. Dlx3 alone increased the ALP-Luc and BSP-Luc activity, which was further enhanced by ER-α (Fig. 1C). Collectively, these results indicate that ER-α plays a positive role in osteoblast differentiation and reinforces the Dlx3-induced activation of osteoblast differentiation.
To determine whether a physical interaction between Dlx3 and ER-α affected BMP2-induced osteoblast differentiation, HEK293 cells were transfected with Myc-Dlx3 and HA-ER-α, followed by IP and IB. Additionally, HEK293 cells were transfected with HA-ER-α and GFP-Dlx3 and then analyzed using IP and IB. These experiments showed that Dlx3 was bound to ER-α (Figs. 2A and 2B). To determine whether ER-α can regulate the transcriptional activity of Dlx3, HEK293 cells were transfected with a DRE-Luc reporter gene with different combinations of Dlx3 and ER-α. Dlx3 by itself increased reporter activity compared to control group, and co-transfection with ER-α further increased reporter activity in a dose-dependent manner (Fig. 2C). To determine whether its regulation is related to the ligand, we treated the cells with E2. However, the transcriptional activity of Dlx3 was not influenced by E2 (Fig. 2D). Since the nature of the interactions between Dlx3 and ER-α predicted that they might also regulate each other, next we examined whether Dlx3 can affect ER-transcriptional activity. HEK293 cells were transfected an ERE-Luc with different combinations of Dlx3 and ER-α and then treated with E2 for 12 h. We found that Dlx3 had no effect on ER-α-dependent reporter gene activity (Fig. 2E). These results suggest that ER-α interacts with Dlx3 and increases its transcriptional activity.
To determine whether the regulation of Dlx3 by ER-α is independent of the ligand (E2), we fragmented ER-α based on the characteristics in the previous report (
As ER-α interacts with Dlx3, we examined whether ER-α has an effect on Dlx3 binding to DRE in experiments using a DAPA assay, in which short biotinylated DNA probes containing the DRE sequences were hybridized with nuclear proteins obtained from HEK293 cells transfected with combinations of Dlx3 and ER-α-FL or ER-α-ΔLBD. We found that both ER-α-FL and ER-α-ΔLBD induced efficient Dlx3 association with the DRE motif (Figs. 4A and 4B). These results imply that ER-α increases the affinity of Dlx3 for the DRE sequence in a ligand-independent manner.
Estrogen is an important hormone for bone development, growth, and metabolism. Although many studies have focused on estrogen as an inhibitor of bone resorption, others suggest additional effects on bone formation. Estrogen may act in part on osteoblasts to inhibit apoptosis (
Recent studies show that unliganded ER-α regulates various cell signaling and the expressions of target genes. Unliganded ER-α is required for the osteogenic response to mechanical loading in a ligand-independent manner (
The internal structure of the ER contains six distinct regions which are labeled A through F as shown in Fig. 3A. The N-terminal region (A/B) contains activation function 1 (AF-1) which is responsible for constitutive ligand-independent activation of the receptor (
In conclusion, as shown in Fig. 5, we have found that unliganded ER-α physically interacts with Dlx3
Hyun-Jung Kim, Woo-Jin Kim, and Hyun-Mo Ryoo
Mol. Cells 2020; 43(2): 160-167 https://doi.org/10.14348/molcells.2019.0247Yura Lee, Kyoung Jun Bae, Hae Jung Chon, Seong Hwan Kim, Soon Ae Kim, and Jiyeon Kim
Mol. Cells 2016; 39(5): 389-394 https://doi.org/10.14348/molcells.2016.2300Aiguo Li, Libin Yang, Xiaolin Geng, Xingmei Peng, Tan Lu, Yanjun Deng, and Yuzheng Dong
Mol. Cells 2015; 38(11): 941-949 https://doi.org/10.14348/molcells.2015.2353