Previous​ Next
  • Research ArticleJanuary 31, 2021

    11 1613 872

    T-Cell Death Associated Gene 51 Is a Novel Negative Regulator of PPARγ That Inhibits PPARγ-RXRα Heterodimer Formation in Adipogenesis

    Sumi Kim , Nari Lee , Eui-Soon Park , Hyeongseok Yun , Tae-Uk Ha , Hyoeun Jeon , Jiyeon Yu , Seunga Choi , Bongjin Shin , Jungeun Yu , Sang Dal Rhee , Yongwon Choi , and Jaerang Rho

    Mol. Cells 2021; 44(1): 1-12

    Abstract : The nuclear receptor peroxisome proliferator-activated receptor γ (PPARγ) is the master transcriptional regulator in adipogenesis. PPARγ forms a heterodimer with another nuclear receptor, retinoid X receptor (RXR), to form an active transcriptional complex, and their transcriptional activity is tightly regulated by the association with either coactivators or corepressors. In this study, we identified T-cell death-associated gene 51 (TDAG51) as a novel corepressor of PPARγ-mediated transcriptional regulation. We showed that TDAG51 expression is abundantly maintained in the early stage of adipogenic differentiation. Forced expression of TDAG51 inhibited adipocyte differentiation in 3T3-L1 cells. We found that TDAG51 physically interacts with PPARγ in a ligand-independent manner. In deletion mutant analyses, large portions of the TDAG51 domains, including the pleckstrin homology-like, glutamine repeat and proline-glutamine repeat domains but not the proline-histidine repeat domain, are involved in the interaction with the region between residues 140 and 506, including the DNA binding domain, hinge, ligand binding domain and activation function-2 domain, in PPARγ. The heterodimer formation of PPARγ-RXRα was competitively inhibited in a ligand-independent manner by TDAG51 binding to PPARγ. Thus, our data suggest that TDAG51, which could determine adipogenic cell fate, acts as a novel negative regulator of PPARγ by blocking RXRα recruitment to the PPARγ-RXRα heterodimer complex in adipogenesis.

  • Research ArticleJanuary 31, 2021

    1 1139 537

    Abstract : Apoptosis and compensatory proliferation, two intertwined cellular processes essential for both development and adult homeostasis, are often initiated by the mis-regulation of centrosomal proteins, damaged DNA, and defects in mitosis. Fly Anastral spindle 3 (Ana3) is a member of the pericentriolar matrix proteins and known as a key component of centriolar cohesion and basal body formation. We report here that ana3m19 is a suppressor of lethality induced by the overexpression of Sol narae (Sona), a metalloprotease in a disintegrin and metalloprotease with thrombospondin motif (ADAMTS) family. ana3m19 has a nonsense mutation that truncates the highly conserved carboxyl terminal region containing multiple Armadillo repeats. Lethality induced by Sona overexpression was completely rescued by knockdown of Ana3, and the small and malformed wing and hinge phenotype induced by the knockdown of Ana3 was also normalized by Sona overexpression, establishing a mutually positive genetic interaction between ana3 and sona. p35 inhibited apoptosis and rescued the small wing and hinge phenotype induced by knockdown of ana3. Furthermore, overexpression of Ana3 increased the survival rate of irradiated flies and reduced the number of dying cells, demonstrating that Ana3 actively promotes cell survival. Knockdown of Ana3 decreased the levels of both intra- and extracellular Sona in wing discs, while overexpression of Ana3 in S2 cells dramatically increased the levels of both cytoplasmic and exosomal Sona due to the stabilization of Sona in the lysosomal degradation pathway. We propose that one of the main functions of Ana3 is to stabilize Sona for cell survival and proliferation.

  • Research ArticleJanuary 31, 2021

    9 777 600

    Molecular Analysis of the Interaction between Human PTPN21 and the Oncoprotein E7 from Human Papillomavirus Genotype 18

    Hye Seon Lee , Min Wook Kim , Kyeong Sik Jin , Ho-Chul Shin , Won Kon Kim, Sang Chul Lee, Seung Jun Kim , Eun-Woo Lee , and Bonsu Ku

    Mol. Cells 2021; 44(1): 26-37

    Abstract : Human papillomaviruses (HPVs) cause cellular hyperproliferation-associated abnormalities including cervical cancer. The HPV genome encodes two major viral oncoproteins, E6 and E7, which recruit various host proteins by direct interaction for proteasomal degradation. Recently, we reported the structure of HPV18 E7 conserved region 3 (CR3) bound to the protein tyrosine phosphatase (PTP) domain of PTPN14, a well-defined tumor suppressor, and found that this intermolecular interaction plays a key role in E7-driven transformation and tumorigenesis. In this study, we carried out a molecular analysis of the interaction between CR3 of HPV18 E7 and the PTP domain of PTPN21, a PTP protein that shares high sequence homology with PTPN14 but is putatively oncogenic rather than tumor-suppressive. Through the combined use of biochemical tools, we verified that HPV18 E7 and PTPN21 form a 2:2 complex, with a dissociation constant of 5 nM and a nearly identical binding manner with the HPV18 E7 and PTPN14 complex. Nevertheless, despite the structural similarities, the biological consequences of the E7 interaction were found to differ between the two PTP proteins. Unlike PTPN14, PTPN21 did not appear to be subjected to proteasomal degradation in HPV18-positive HeLa cervical cancer cells. Moreover, knockdown of PTPN21 led to retardation of the migration/invasion of HeLa cells and HPV18 E7-expressing HaCaT keratinocytes, which reflects its protumor activity. In conclusion, the associations of the viral oncoprotein E7 with PTPN14 and PTPN21 are similar at the molecular level but play different physiological roles.

  • Research ArticleJanuary 31, 2021

    6 1297 1021

    Transforming Growth Factor β Inhibits MUC5AC Expression by Smad3/HDAC2 Complex Formation and NF-κB Deacetylation at K310 in NCI-H292 Cells

    Su Ui Lee , Mun-Ock Kim , Myung-Ji Kang , Eun Sol Oh , Hyunju Ro , Ro Woon Lee , Yu Na Song , Sunin Jung , Jae-Won Lee , Soo Yun Lee , Taeyeol Bae , Sung-Tae Hong , and Tae-Don Kim

    Mol. Cells 2021; 44(1): 38-49

    Abstract : Airway mucus secretion is an essential innate immune response for host protection. However, overproduction and hypersecretion of mucus, mainly composed of the gel- forming MUC5AC protein, are significant risk factors for patients with asthma and chronic obstructive pulmonary disease (COPD). The transforming growth factor β (TGFβ) signaling pathway negatively regulates MUC5AC expression; however, the underlying molecular mechanism is not fully understood. Here, we showed that TGFβ significantly reduces the expression of MUC5AC mRNA and its protein in NCI-H292 cells, a human mucoepidermoid carcinoma cell line. This reduced MUC5AC expression was restored by a TGFβ receptor inhibitor (SB431542), but not by the inhibition of NF-κB (BAY11-7082 or Triptolide) or PI3K (LY294002) activities. TGFβ-activated Smad3 dose-dependently bound to MUC5AC promoter. Notably, TGFβ-activated Smad3 recruited HDAC2 and facilitated nuclear translocation of HDAC2, thereby inducing the deacetylation of NF-κB at K310, which is essential for a reduction in NF-κB transcriptional activity. Both TGFβ-induced nuclear translocation of Smad3/HDAC2 and deacetylation of NF-κB at K310 were suppressed by a Smad3 inhibitor (SIS3). These results suggest that the TGFβ-activated Smad3/HDAC2 complex is an essential negative regulator for MUC5AC expression and an epigenetic regulator for NF-κB acetylation. Therefore, these results collectively suggest that modulation of the TGFβ1/Smad3/HDAC2/NF-κB pathway axis can be a promising way to improve lung function as a treatment strategy for asthma and COPD.

  • Research ArticleJanuary 31, 2021

    9 1288 961

    Expression of HYOU1 via Reciprocal Crosstalk between NSCLC Cells and HUVECs Control Cancer Progression and Chemoresistance in Tumor Spheroids

    Minji Lee , Yeonhwa Song , Inhee Choi , Su-Yeon Lee , Sanghwa Kim , Se-Hyuk Kim , Jiho Kim , and Haeng Ran Seo

    Mol. Cells 2021; 44(1): 50-62

    Abstract : Among all cancer types, lung cancer ranks highest worldwide in terms of both incidence and mortality. The crosstalk between lung cancer cells and their tumor microenvironment (TME) has begun to emerge as the “Achilles heel” of the disease and thus constitutes an attractive target for anticancer therapy. We previously revealed that crosstalk between lung cancer cells and endothelial cells (ECs) induces chemoresistance in multicellular tumor spheroids (MCTSs). In this study, we demonstrated that factors secreted in response to crosstalk between ECs and lung cancer cells play pivotal roles in the development of chemoresistance in lung cancer spheroids. We subsequently determined that the expression of hypoxia up-regulated protein 1 (HYOU1) in lung cancer spheroids was increased by factors secreted in response to crosstalk between ECs and lung cancer cells. Direct interaction between lung cancer cells and ECs also caused an elevation in the expression of HYOU1 in MCTSs. Inhibition of HYOU1 expression not only suppressed stemness and malignancy, but also facilitated apoptosis and chemosensitivity in lung cancer MCTSs. Inhibition of HYOU1 expression also significantly increased the expression of interferon signaling components in lung cancer cells. Moreover, the activation of the PI3K/AKT/mTOR pathway was involved in the HYOU1-induced aggression of lung cancer cells. Taken together, our results identify HYOU1, which is induced in response to crosstalk between ECs and lung cancer cells within the TME, as a potential therapeutic target for combating the aggressive behavior of cancer cells.

Mol. Cells
Nov 30, 2023 Vol.46 No.11, pp. 655~725
Kim et al. (pp. 710-724) demonstrated that a pathogen-derived Ralstonia pseudosolanacearum type III effector RipL delays flowering time and enhances susceptibility to bacterial infection in Arabidopsis thaliana. Shown is the RipL-expressing Arabidopsis plant, which displays general dampening of the transcriptional program during pathogen infection, grown in long-day conditions.


Molecules and Cells

eISSN 0219-1032
qr-code Download