Jihoon Kim, and Won Do Heo
Mol. Cells 2018; 41(9): 809-817 https://doi.org/10.14348/molcells.2018.0295Abstract : Discovery of the naturally evolved fluorescent proteins and their genetically engineered biosensors have enormously contributed to current bioimaging techniques. These reporters to trace dynamic changes of intracellular protein activities have continuously transformed according to the various demands in biological studies. Along with that, light-inducible optogenetic technologies have offered scientists to perturb, control and analyze the function of intracellular machineries in spatiotemporal manner. In this review, we present an overview of the molecular strategies that have been exploited for producing genetically encoded protein reporters and various optogenetic modules. Finally, in particular, we discuss the current efforts for combined use of these reporters and optogenetic modules as a powerful tactic for the control and imaging of signaling events in cells and tissues.
Melody Zhao, Jihye Rachel Kim, Rebekah van Bruggen, and Jeehye Park
Mol. Cells 2018; 41(9): 818-829 https://doi.org/10.14348/molcells.2018.0243Abstract : Significant research efforts are ongoing to elucidate the complex molecular mechanisms underlying amyotrophic lateral sclerosis (ALS), which may in turn pinpoint potential therapeutic targets for treatment. The ALS research field has evolved with recent discoveries of numerous genetic mutations in ALS patients, many of which are in genes encoding RNA binding proteins (RBPs), including TDP-43, FUS, ATXN2, TAF15, EWSR1, hnRNPA1, hnRNPA2/B1, MATR3 and TIA1. Accumulating evidence from studies on these ALS-linked RBPs suggests that dysregulation of RNA metabolism, cytoplasmic mislocalization of RBPs, dysfunction in stress granule dynamics of RBPs and increased propensity of mutant RBPs to aggregate may lead to ALS pathogenesis. Here, we review current knowledge of the biological function of these RBPs and the contributions of ALS-linked mutations to disease pathogenesis.
Yu You, Keting Que, Yun Zhou, Zhen Zhang, Xiaoping Zhao, Jianpin Gong, and Zuojin Liu
Mol. Cells 2018; 41(9): 830-841 https://doi.org/10.14348/molcells.2018.0181Abstract : Recent studies have indicated that microRNAs (miRNAs) play an important role in hepatocellular carcinoma (HCC) progression. In this study, we showed that miR-766-3p was decreased in approximately 72% of HCC tissues and cell lines, and its low expression level was significantly correlated with tumour size, TNM stage, metastasis, and poor prognosis in HCC. Ectopic miR-766-3p expression inhibited HCC cell proliferation, colony formation, migration and invasion. In addition, we showed that miR-766-3p repressed Wnt3a expression. A luciferase reporter assay revealed that Wnt3a was a direct target of miR-766-3p, and an inverse correlation between miR-766-3p and Wnt3a expression was observed. Moreover, Wnt3a up-regulation reversed the effects of miR-766-3p on HCC progression. In addition, our study showed that miR-766-3p up-regulation decreased the nuclear β-catenin level and expression of Wnt targets (TCF1 and Survivin) and reduced the level of MAP protein regulator of cytokinesis 1 (PRC1). However, these effects of miR-766-3p were reversed by Wnt3a up-regulation. In addition, PRC1 up-regulation increased the nuclear β-catenin level and protein expression of TCF1 and Survivin. iCRT3, which disrupts the β-catenin-TCF4 interaction, repressed the TCF1, Survivin and PRC1 protein levels. Taken together, our results suggest that miR-766-3p down-regulation promotes HCC cell progression, probably by targeting the Wnt3a/PRC1 pathway, and miR-766-3p may serve as a potential therapeutic target in HCC.
Gwang Sik Kim, Hee-Sae Park, and Young Chul Lee
Mol. Cells 2018; 41(9): 842-852 https://doi.org/10.14348/molcells.2018.0196Abstract : Notch signaling is an evolutionarily conserved pathway and involves in the regulation of various cellular and developmental processes. Ligand binding releases the intracellular domain of Notch receptor (NICD), which interacts with DNA-bound CSL [CBF1/Su(H)/Lag-1] to activate transcription of target genes. In the absence of NICD binding, CSL down-regulates target gene expression through the recruitment of various corepressor proteins including SMRT/NCoR (silencing mediator of retinoid and thyroid receptors/nuclear receptor corepressor), SHARP (SMRT/HDAC1-associated repressor protein), and KyoT2. Structural and functional studies revealed the molecular basis of these interactions, in which NICD coactivator and corepressor proteins competitively bind to β-trefoil domain (BTD) of CSL using a conserved ?W?P motif (? denotes any hydrophobic residues). To date, there are conflicting ideas regarding the molecular mechanism of SMRT-mediated repression of CSL as to whether CSL-SMRT interaction is direct or indirect (via the bridge factor SHARP). To solve this issue, we mapped the CSL-binding region of SMRT and employed a ‘one- plus two-hybrid system’ to obtain CSL interaction-defective mutants for this region. We identified the CSL-interaction module of SMRT (CIMS; amino acid 1816?1846) as the molecular determinant of its direct interaction with CSL. Notably, CIMS contains a canonical ?W?P sequence (AP
Liang-Liang Chen, Ge-Xin Gao, Fei-Xia Shen, Xiong Chen, Xiao-Hua Gong, and Wen-Jun Wu
Mol. Cells 2018; 41(9): 853-867 https://doi.org/10.14348/molcells.2018.0103Abstract : As the most common type of endocrine malignancy, papillary thyroid cancer (PTC) accounts for 85–90% of all thyroid cancers. In this study, we presented the hypothesis that SDC4 gene silencing could effectively attenuate epithelial mesenchymal transition (EMT), and promote cell apoptosis
Jin Ma, Jun Zhang, Yuan-Chi Weng, and Jian-Cheng Wang
Mol. Cells 2018; 41(9): 868-880 https://doi.org/10.14348/molcells.2018.0109Abstract : Pancreatic cancer (PC) is one of the most aggressive cancers presenting with high rates of invasion and metastasis, and unfavorable prognoses. The current study aims to investigate whether EZH2/miR-139-5p axis affects epithelial-mesenchymal transition (EMT) and lymph node metastasis (LNM) in PC, and the mechanism how EZH2 regulates miR-139-5p. Human PC and adjacent normal tissues were collected to determine expression of EZH2 and miR-139-5p, and their relationship with clinicopathological features of PC. Human PC cell line was selected, and treated with miR-139-5p mimics/inhibitors, EZH2 vector or shEZH2 in order to validate the regulation of EZH2-mediated miR-139-5p in PC cells