Top

Archives

Archives
Previous​ Next
  • MinireviewNovember 30, 2017

    0 465 1386

    Phospholipase D and Its Essential Role in Cancer

    Ju Hwan Cho, and Joong-Soo Han

    Mol. Cells 2017; 40(11): 805-813 https://doi.org/10.14348/molcells.2017.0241
    Abstract

    Abstract : The role of phospholipase D (PLD) in cancer development and management has been a major area of interest for researchers. The purpose of this mini-review is to explore PLD and its distinct role during chemotherapy including anti-apoptotic function. PLD is an enzyme that belongs to the phospholipase super family and is found in a broad range of organisms such as viruses, yeast, bacteria, animals, and plants. The function and activity of PLD are widely dependent on and regulated by neurotransmitters, hormones, small monomeric GTPases, and lipids. A growing body of research has shown that PLD activity is significantly increased in cancer tissues and cells, indicating that it plays a critical role in signal transduction, cell proliferation, and anti-apoptotic processes. In addition, recent studies show that PLD is a downstream transcriptional target of proteins that contribute to inflammation and carcinogenesis such as Sp1, NFκB, TCF4, ATF-2, NFATc2, and EWS-Fli. Thus, compounds that inhibit expression or activity of PLD in cells can be potentially useful in reducing inflammation and sensitizing resistant cancers during chemotherapy.

  • MinireviewNovember 30, 2017

    0 393 1302
    Abstract

    Abstract : Meiotic homologous recombination generates new combinations of preexisting genetic variation and is a crucial process in plant breeding. Within the last decade, our understanding of plant meiotic recombination and genome diversity has advanced considerably. Innovation in DNA sequencing technology has led to the exploration of high-resolution genetic and epigenetic information in plant genomes, which has helped to accelerate plant breeding practices via high-throughput genotyping, and linkage and association mapping. In addition, great advances toward understanding the genetic and epigenetic control mechanisms of meiotic recombination have enabled the expansion of breeding programs and the unlocking of genetic diversity that can be used for crop improvement. This review highlights the recent literature on plant meiotic recombination and discusses the translation of this knowledge to the manipulation of meiotic recombination frequency and location with regards to crop plant breeding.

  • Rapid ReportNovember 30, 2017

    0 323 1127

    Targeted Base Editing via RNA-Guided Cytidine Deaminases in Xenopus laevis Embryos

    Dong-Seok Park, Mijung Yoon, Jiyeon Kweon, An-Hee Jang, Yongsub Kim, and Sun-Cheol Choi

    Mol. Cells 2017; 40(11): 823-827 https://doi.org/10.14348/molcells.2017.0262
    Abstract

    Abstract : Genome editing using programmable nucleases such as CRISPR/Cas9 or Cpf1 has emerged as powerful tools for gene knock-out or knock-in in various organisms. While most genetic diseases are caused by point mutations, these genome-editing approaches are inefficient in inducing single-nucleotide substitutions. Recently, Cas9-linked cytidine deaminases, named base editors (BEs), have been shown to convert cytidine to uridine efficiently, leading to targeted single-base pair substitutions in human cells and organisms. Here, we first report on the generation of Xenopus laevis mutants with targeted single-base pair substitutions using this RNA-guided programmable deaminase. Injection of base editor 3 (BE3) ribonucleoprotein targeting the tyrosinase (tyr) gene in early embryos can induce site-specific base conversions with the rates of up to 20.5%, resulting in oculocutaneous albinism phenotypes without off-target mutations. We further test this base-editing system by targeting the tp53 gene with the result that the expected single-base pair substitutions are observed at the target site. Collectively, these data establish that the programmable deaminases are efficient tools for creating targeted point mutations for human disease modeling in Xenopus.

  • ArticleNovember 30, 2017

    0 305 829
    Abstract

    Abstract : Eukaryotic cells consist of a complex network of thousands of proteins present in different organelles where organelle-specific cellular processes occur. Identification of the subcellular localization of a protein is important for understanding its potential biochemical functions. In the post-genomic era, localization of unknown proteins is achieved using multiple tools including a fluorescent-tagged protein approach. Several fluorescent-tagged protein organelle markers have been introduced into dicot plants, but its use is still limited in monocot plants. Here, we generated a set of multicolored organelle markers (fluorescent-tagged proteins) based on well-established targeting sequences. We used a series of pGWBs binary vectors to ameliorate localization and co-localization experiments using monocot plants. We constructed different fluorescent-tagged markers to visualize rice cell organelles, i.e., nucleus, plastids, mitochondria, peroxisomes, golgi body, endoplasmic reticulum, plasma membrane, and tonoplast, with four different fluorescent proteins (FPs) (G3GFP, mRFP, YFP, and CFP). Visualization of FP-tagged markers in their respective compartments has been reported for dicot and monocot plants. The comparative localization of the nucleus marker with a nucleus localizing sequence, and the similar, characteristic morphology of mCherry-tagged Arabidopsis organelle markers and our generated organelle markers in onion cells, provide further evidence for the correct subcellular localization of the Oryza sativa (rice) organelle marker. The set of eight different rice organelle markers with four different FPs provides a valuable resource for determining the sub-cellular localization of newly identified proteins, conducting co-localization assays, and generating stable transgenic localization in monocot plants.

  • ArticleNovember 30, 2017

    0 230 568
    Abstract

    Abstract : As a component of the neurovascular unit, cerebral smooth muscle cells (CSMCs) are an important mediator in the development of cerebral vascular diseases such as stroke. Epoxyeicosatrienoic acids (EETs) are the products of arachidonic acid catalyzed by cytochrome P450 epoxygenase. EETs are shown to exert neuroprotective effects. In this article, the role of EET in the growth and apoptosis of CSMCs and the underlying mechanisms under oxygen glucose deprivation (OGD) conditions were addressed. The viability of CMSCs was decreased significantly in the OGD group, while different subtypes of EETs, especially 14,15-EET, could increase the viability of CSMCs under OGD conditions. RAPA (serine/threonine kinase Mammalian Target of Rapamycin), a specific mTOR inhibitor, could elevate the level of oxygen free radicals in CSMCs as well as the anti-apoptotic effects of 14,15-EET under OGD conditions. However, SP600125, a specific JNK (c-Jun N-terminal protein kinase) pathway inhibitor, could attenuate oxygen free radicals levels in CSMCs as well as the anti-apoptotic effects of 14,15-EET under OGD conditions. These results strongly suggest that EETs exert protective functions during the growth and apoptosis of CSMCs, via the JNK/c-Jun and mTOR signaling pathways in vitro. We are the first to disclose the beneficial roles and underlying mechanism of 14,15-EET in CSMC under OGD conditions.

  • ArticleNovember 30, 2017

    0 233 573

    Sox12 Is a Cancer Stem-Like Cell Marker in Hepatocellular Carcinoma

    Song Zou, Chen Wang, Jiansheng Liu, Qun Wang, Dongdong Zhang, Shengnan Zhu, Shengyuan Xu, Mafei Kang, and Shaozhong He

    Mol. Cells 2017; 40(11): 847-854 https://doi.org/10.14348/molcells.2017.0129
    Abstract

    Abstract : Recent studies on molecular carcinogenesis suggest that the chemo-resistance of some cancers is largely due to presence of cancer stem cells (CSCs), which affect the chemotherapy outcome for hepatocellular carcinoma (HCC). However, currently no consensus on a CSC phenotype in HCC has been obtained. Here, we examined Sox12 as a novel CSC marker in HCC. Sox12+ versus Sox12? cells were purified from HCC cell lines. The Sox12+ cells were compared with Sox12? HCC cells for tumor sphere formation, chemo-resistance, tumor formation after serial adoptive transplantations in nude mice, and the frequency of developing distal metastasis. We found that compared to Sox12? HCC cells, Sox12+ HCC cells generated significantly more tumor spheres in culture, were more chemo-resistant to cisplatin, were detected in circulation more frequently, and formed distal tumor more frequently. Moreover, Sox12 appeared to functionally contribute to the stemness of HCC cells. Thus, we conclude that Sox12 may be a novel marker for enriching CSCs in HCC.

  • ArticleNovember 30, 2017

    0 329 571

    Endophilin A2: A Potential Link to Adiposity and Beyond

    Assim A. Alfadda, Reem M. Sallam, Rukhsana Gul, Injae Hwang, and Sojeong Ka

    Mol. Cells 2017; 40(11): 855-863 https://doi.org/10.14348/molcells.2017.0137
    Abstract

    Abstract : Adipose tissue plays a central role in regulating dynamic crosstalk between tissues and organs. A detailed description of molecules that are differentially expressed upon changes in adipose tissue mass is expected to increase our understanding of the molecular mechanisms that underlie obesity and related metabolic co-morbidities. Our previous studies suggest a possible link between endophilins (SH3Grb2 proteins) and changes in body weight. To explore this further, we sought to assess the distribution of endophilin A2 (EA2) in human adipose tissue and experimental animals. Human paired adipose tissue samples (subcutaneous and visceral) were collected from subjects undergoing elective abdominal surgery and abdominal liposuction. We observed elevated EA2 gene expression in the subcutaneous compared to that in the visceral human adipose tissue. EA2 gene expression negatively correlated with adiponectin and chemerin in visceral adipose tissue, and positively correlated with TNF-α in subcutaneous adipose tissue. EA2 gene expression was significantly downregulated during differentiation of preadipocytes in vitro. In conclusion, this study provides a description of EA2 distribution and emphasizes a need to study the roles of this protein during the progression of obesity.

  • ArticleNovember 30, 2017

    0 353 889
    Abstract

    Abstract : The uncoupling protein 4 (ucp-4) gene is involved in age-dependent neurodegeneration in C. elegans. Therefore, we aimed to investigate the mechanism underlying the association between mitochondrial uncoupling and neurodegeneration by examining the effects of uncoupling agents and ucp-4 overexpression in C. elegans. Treatment with either DNP or CCCP improved neuronal defects in wild type during aging. Uncoupling agents also restored neuronal phenotypes of ucp-4 mutants to those exhibited by wild type, while ucp-4 overexpression attenuated the severity of age-dependent neurodegeneration. Neuronal improvements were further associated with reductions in mitochondrial membrane potentials. However, these age-dependent neuroprotective effects were limited in mitophagy-deficient mutant, pink-1, background. These results suggest that membrane uncoupling can attenuate age-dependent neurodegeneration by stimulating mitophagy.

  • ArticleNovember 30, 2017

    0 273 488

    Maintained MPF Level after Oocyte Vitrification Improves Embryonic Development after IVF, but not after Somatic Cell Nuclear Transfer

    Ji I Baek, Dong-Won Seol, Ah-Reum Lee, Woo Sik Lee, Sook-Young Yoon, and Dong Ryul Lee

    Mol. Cells 2017; 40(11): 871-879 https://doi.org/10.14348/molcells.2017.0184
    Abstract

    Abstract : Levels of maturation-promoting factor (MPF) in oocytes decline after vitrification, and this decline has been suggested as one of the main causes of low developmental competence resulting from cryoinjury. Here, we evaluated MPF activity in vitrified mouse eggs following treatment with caffeine, a known stimulator of MPF activity, and/or the proteasome inhibitor MG132. Collected MII oocytes were vitrified and divided into four groups: untreated, 10 mM caffeine (CA), 10 μM MG132 (MG), and 10 mM caffeine +10 μM MG132 (CA+MG). After warming, the MPF activity of oocytes and their blastocyst formation and implantation rates in the CA, MG, and CA+MG groups were much higher than those in the untreated group. However, the cell numbers in blastocysts did not differ among groups. Analysis of the effectiveness of caffeine and MG132 for improving somatic cell nuclear transfer (SCNT) technology using cryopreserved eggs showed that supplementation did not improve the blastocyst formation rate of cloned mouse eggs. These results suggest that maintaining MPF activity after cryopreservation may have a positive effect on further embryonic development, but is unable to fully overcome cryoinjury. Thus, intrinsic factors governing the developmental potential that diminish during oocyte cryopreservation should be explored.

  • ArticleNovember 30, 2017

    0 364 949

    Lipopolysaccharide (LPS)-Induced Autophagy Is Responsible for Enhanced Osteoclastogenesis

    Ok-Joo Sul, Hyun-Jung Park, Ho-Jung Son, and Hye-Seon Choi

    Mol. Cells 2017; 40(11): 880-887 https://doi.org/10.14348/molcells.2017.0230
    Abstract

    Abstract : We hypothesized that inflammation affects number and activity of osteoclasts (OCs) via enhancing autophagy. Lipopolysaccharide (LPS) induced autophagy, osteoclastogenesis, and cytoplasmic reactive oxygen species (ROS) in bone marrow-derived macrophages that were pre-stimulated with receptor activator of nuclear factor-κB ligand. An autophagy inhibitor, 3-methyladenine (3-MA) decreased LPS-induced OC formation and bone resorption, indicating that autophagy is responsible for increasing number and activity of OCs upon LPS stimulus. Knockdown of autophagy-related protein 7 attenuated the effect of LPS on OC-specific genes, supporting a role of LPS as an autophagy inducer in OC. Removal of ROS decreased LPS-induced OC formation as well as autophagy. However, 3-MA did not affect LPS-induced ROS levels, suggesting that ROS act upstream of phosphatidylinositol-4,5-bisphosphate 3-kinase in LPS-induced autophagy. Our results suggest the possible use of autophagy inhibitors targeting OCs to reduce inflammatory bone loss.

Mol. Cells
Aug 31, 2022 Vol.45 No.8
COVER PICTURE
Cryo-EM structure of human porphyrin transporter ABCB6 (main figure) shows that binding of hemin (inset, magenta) in concert with two glutathione molecules (cyan) primes ABCB6 for high ATP turnover (Kim et al., pp. 575-587).

Archives

Molecules and Cells

eISSN 0219-1032
qr-code Download