Rebecca Bish, and Christine Vogel
Mol. Cells 2014; 37(5): 357-364 https://doi.org/10.14348/molcells.2014.0008Abstract : Medulloblastoma, the most common malignant brain tumor in children, is a disease whose mechanisms are now beginning to be uncovered by high-throughput studies of somatic mutations, mRNA expression patterns, and epigenetic profiles of patient tumors. One emerging theme from studies that sequenced the tumor genomes of large cohorts of medulloblastoma patients is frequent mutation of RNA binding proteins. Proteins which bind multiple RNA targets can act as master regulators of gene expression at the post-transcriptional level to co-ordinate cellular processes and alter the phenotype of the cell. Identification of the target genes of RNA binding proteins may highlight essential pathways of medulloblastomagenesis that cannot be detected by study of transcriptomics alone. Furthermore, a subset of RNA binding proteins are attractive drug targets. For example, compounds that are under development as anti-viral targets due to their ability to inhibit RNA helicases could also be tested in novel approaches to medulloblastoma therapy by targeting key RNA binding proteins. In this review, we discuss a number of RNA binding proteins, including Musashi1 (MSI1), DEAD (Asp-Glu-Ala-Asp) box helicase 3 X-linked (DDX3X), DDX31, and cell division cycle and apoptosis regulator 1 (CCAR1), which play potentially critical roles in the growth and/or maintenance of medulloblastoma.
Jin Young Huh, Yoon Jeong Park, Mira Ham, and Jae Bum Kim
Mol. Cells 2014; 37(5): 365-371 https://doi.org/10.14348/molcells.2014.0074Abstract : Recent findings, notably on adipokines and adipose tissue inflammation, have revised the concept of adipose tissues being a mere storage depot for body energy. Instead, adipose tissues are emerging as endocrine and immunologically active organs with multiple effects on the regulation of systemic energy homeostasis. Notably, compared with other metabolic organs such as liver and muscle, various inflammatory responses are dynamically regulated in adipose tissues and most of the immune cells in adipose tissues are involved in obesity-mediated metabolic complications, including insulin resistance. Here, we summarize recent findings on the key roles of innate (neutrophils, macrophages, mast cells, eosinophils) and adaptive (regulatory T cells, type 1 helper T cells, CD8 T cells, B cells) immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. In particular, the roles of natural killer T cells, one type of innate lymphocyte, in adipose tissue inflammation will be discussed. Finally, a new role of adipocytes as antigen presenting cells to modulate T cell activity and subsequent adipose tissue inflammation will be proposed.
Hyoung Tae Kim, Myong Gi Chung, and Ki-Joong Kim
Mol. Cells 2014; 37(5): 372-382 https://doi.org/10.14348/molcells.2014.2296Abstract : In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of
Weidong Li, Qian Wang, Qiaozhen Su, Dandan Ma, Chang An, Lei Ma, and Hongfeng Liang
Mol. Cells 2014; 37(5): 383-388 https://doi.org/10.14348/molcells.2014.0009Abstract : Renal cell carcinoma (RCC) is associated with a high frequency of metastasis and only few therapies substantially prolong survival. Honokiol, isolated from
Nami Kang, Minho Won, Myungchull Rhee, and Hyunju Ro
Mol. Cells 2014; 37(5): 389-398 https://doi.org/10.14348/molcells.2014.0032Abstract : Siah2 is a zebrafish homologue of mammalian Siah family. Siah acts as an E3 ubiquitin ligase that binds proteins destined for degradation. Extensive homology between
Kwang Deok Shin, Han Nim Lee, and Taijoon Chung
Mol. Cells 2014; 37(5): 399-405 https://doi.org/10.14348/molcells.2014.0042Abstract : Autophagy targets cytoplasmic cargo to a lytic compartment for degradation. Autophagy-related (Atg) proteins, including the transmembrane protein Atg9, are involved in different steps of autophagy in yeast and mammalian cells. Functional classification of core Atg proteins in plants has not been clearly confirmed, partly because of the limited availability of reliable assays for monitoring autophagic flux. By using
Jun-Dae Kim, Hey-Jin Kim, Soonil Koun, Hyung-Jin Ham, Myoung-Jin Kim, Myungchull Rhee, and Tae-Lin Huh
Mol. Cells 2014; 37(5): 406-411 https://doi.org/10.14348/molcells.2014.0072Abstract : The initial step of atrioventricular (AV) valve development involves the deposition of extracellular matrix (ECM) components of the endocardial cushion and the endocardialmesenchymal transition. While the appropriately regulated expression of the major ECM components, Versican and Hyaluronan, that form the endocardial cushion is important for heart valve development, the underlying mechanism that regulates ECM gene expression remains unclear. We found that zebrafish
Doyeon Kim, Jongkyu Kim, and Daehyun Baek
Mol. Cells 2014; 37(5): 412-417 https://doi.org/10.14348/molcells.2014.0100Abstract : It has been reported that exogenously introduced micro-RNA (exo-miRNA) competes with endogenously expressed miRNAs (endo-miRNAs) in human cells, resulting in a detectable upregulation of mRNAs with endo-miRNA target sites (TSs). However, the detailed mechanisms of the competition between exo- and endo-miRNAs remain uninvestigated. In this study, using 74 microarrays that monitored the whole-transcriptome response after introducing miRNAs or siRNAs into HeLa cells, we systematically examined the derepression of mRNAs with exo- and/or endo-miRNA TSs.We quantitatively assessed the effect of the number of endo-miRNA TSs on the degree of mRNA derepression. As a result, we observed that the number of endo-miRNA TSs was significantly associated with the degree of derepression, supporting that the derepression resulted from the competition between exo- and endo-miRNAs. However, when we examined whether the site proficiency of exo-miRNA TSs could also influence mRNA derepression, to our surprise, we discovered a strong positive correlation. Our analysis indicates that site proficiencies of both exo- and endo-miRNA TSs are important determinants for the degree of mRNA derepression, implying that the derepression of mRNAs in response to exo-miRNA is more complex than that currently perceived.Our observations may lead to a more complete understanding of the detailed mechanisms of the competition between exo- and endo-miRNAs and to a more accurate prediction of miRNA targets. Our analysis also suggests an interesting hypothesis that long 3′-UTRs may function as molecular buffer against gene expression regulation by individual miRNAs.
Yutao Yan, Yu Ding, Bingxia Ming, Wenjiao Du, Xiaoling Kong, Li Tian, Fang Zheng, Min Fang, Zheng Tan, and Feili Gong
Mol. Cells 2014; 37(5): 418-425 https://doi.org/10.14348/molcells.2014.0031Abstract : Extracellular hypotonic stress can affect cellular function. Whether and how hypotonicity affects immune cell function remains to be elucidated. Macrophages are immune cells that play key roles in adaptive and innate in immune reactions. The purpose of this study was to investigate the role and underlying mechanism of hypotonic stress in the function of bone marrow-derived macrophages (BMDMs). Hypotonic stress increased endocytic activity in BMDMs, but there was no significant change in the expression of CD80, CD86, and MHC class II molecules, nor in the secretion of TNF-α or IL-10 by BMDMs. Furthermore, the enhanced endocytic activity of BMDMs triggered by hypotonic stress was significantly inhibited by chloride channel-3 (ClC-3) siRNA. Our findings suggest that hypotonic stress can induce endocytosis in BMDMs and that ClC-3 plays a central role in the endocytic process.
Pei-Chen Hsu, Ya-Fan Liao, Chin-Li Lin, Wen-Hao Lin, Guang-Yaw Liu, and Hui-Chih Hung
Mol. Cells 2014; 37(5): 426-434 https://doi.org/10.14348/molcells.2014.2359Abstract : Peptidylarginine deiminase type 2 (PADI2) deiminates (or citrullinates) arginine residues in protein to citrulline residues in a Ca2+-dependent manner, and is found in lymphocytes and macrophages. Vimentin is an intermediate filament protein and a well-known substrate of PADI2. Citrullinated vimentin is found in ionomycin-induced macrophage apoptosis. Citrullinated vimentin is the target of anti-Sa antibodies, which are specific to rheumatoid arthritis, and play a critical role in the pathogenesis of the disease. To investigate the role of PADI2 in apoptosis, we generated a Jurkat cell line that overexpressed the PADI2 transgene from a tetracycline-inducible promoter, and used a combination of 12-O-tetradecanoylphorbol-13-acetate and ionomycin to activate Jurkat cells. We found that PADI2 overexpression reduced the cell viability of activated Jurkat cells in a dose- and time-dependent manner. The PADI2-overexpressed and -activated Jurkat cells presented typical manifestations of apoptosis, and exhibited greater levels of citrullinated proteins, including citrullinated vimentin. Vimentin overexpression rescued a portion of the cells from apoptosis. In conclusion, PADI2 overexpression induces apoptosis in activated Jurkat cells. Vimentin is involved in PADI2-induced apoptosis. Moreover, PADI2-overexpressed Jurkat cells secreted greater levels of vimentin after activation, and expressed more vimentin on their cell surfaces when undergoing apoptosis. Through artificially highlighting PADI2 and vimentin, we demonstrated that PADI2 and vimentin participate in the apoptotic mechanisms of activated T lymphocytes. The secretion and surface expression of vimentin are possible ways of autoantigen presentation to the immune system.