Previous​ Next
  • MinireviewApril 30, 2023

    1 1141 417

    Golgi Stress Response: New Insights into the Pathogenesis and Therapeutic Targets of Human Diseases

    Won Kyu Kim , Wooseon Choi , Barsha Deshar , Shinwon Kang , and Jiyoon Kim

    Mol. Cells 2023; 46(4): 191-199

    Abstract : The Golgi apparatus modifies and transports secretory and membrane proteins. In some instances, the production of secretory and membrane proteins exceeds the capacity of the Golgi apparatus, including vesicle trafficking and the post-translational modification of macromolecules. These proteins are not modified or delivered appropriately due to insufficiency in the Golgi function. These conditions disturb Golgi homeostasis and induce a cellular condition known as Golgi stress, causing cells to activate the ‘Golgi stress response,’ which is a homeostatic process to increase the capacity of the Golgi based on cellular requirements. Since the Golgi functions are diverse, several response pathways involving TFE3, HSP47, CREB3, proteoglycan, mucin, MAPK/ETS, and PERK regulate the capacity of each Golgi function separately. Understanding the Golgi stress response is crucial for revealing the mechanisms underlying Golgi dynamics and its effect on human health because many signaling molecules are related to diseases, ranging from viral infections to fatal neurodegenerative diseases. Therefore, it is valuable to summarize and investigate the mechanisms underlying Golgi stress response in disease pathogenesis, as they may contribute to developing novel therapeutic strategies. In this review, we investigate the perturbations and stress signaling of the Golgi, as well as the therapeutic potentials of new strategies for treating Golgi stress-associated diseases.

  • MinireviewApril 30, 2023

    0 1201 287

    DNA-Dependent Protein Kinase Catalytic Subunit (DNA-PKcs): Beyond the DNA Double-Strand Break Repair

    Ye-Rim Lee , Gi-Sue Kang , Taerim Oh , Hye-Ju Jo , Hye-Joon Park , and G-One Ahn *

    Mol. Cells 2023; 46(4): 200-205

    Abstract : DNA-dependent protein kinase catalytic subunit (DNA-PKcs), a member of the phosphatidylinositol 3-kinase related kinase family is a well-known player in repairing DNA double strand break through non-homologous end joining pathway. This mechanism has allowed us to understand its critical role in T and B cell development through V(D)J recombination and class switch recombination, respectively. We have also learned that the defects in these mechanisms lead to severely combined immunodeficiency (SCID). Here we highlight some of the latest evidence where DNA-PKcs has been shown to localize not only in the nucleus but also in the cytoplasm, phosphorylating various proteins involved in cellular metabolism and cytokine production. While it is an exciting time to unveil novel functions of DNA-PKcs, one should carefully choose experimental models to study DNA-PKcs as the experimental evidence has been shown to differ between cells of defective DNA-PKcs and those of DNA-PKcs knockout. Moreover, while there are several DNA-PK inhibitors currently being evaluated in the clinical trials in attempt to increase the efficacy of radiotherapy or chemotherapy, multiple functions and subcellular localization of DNA-PKcs in various types of cells may further complicate the effects at the cellular and organismal level.

  • Journal ClubApril 30, 2023

    0 382 75

    Is Obesity Inherited?

    Htr2c variants in human obesity

    Eun-Seon Yoo and Jong-Woo Sohn *

    Mol. Cells 2023; 46(4): 206-208
  • Research ArticleApril 30, 2023

    1 639 171

    Homogeneity of XEN Cells Is Critical for Generation of Chemically Induced Pluripotent Stem Cells

    Dahee Jeong , Yukyeong Lee , Seung-Won Lee , Seokbeom Ham , Minseong Lee , Na Young Choi , Guangming Wu , Hans R. Scholer , and Kinarm Ko

    Mol. Cells 2023; 46(4): 209-218

    Abstract : In induced pluripotent stem cells (iPSCs), pluripotency is induced artificially by introducing the transcription factors Oct4, Sox2, Klf4, and c-Myc. When a transgene is introduced using a viral vector, the transgene may be integrated into the host genome and cause a mutation and cancer. No integration occurs when an episomal vector is used, but this method has a limitation in that remnants of the virus or vector remain in the cell, which limits the use of such iPSCs in therapeutic applications. Chemical reprogramming, which relies on treatment with small-molecule compounds to induce pluripotency, can overcome this problem. In this method, reprogramming is induced according to the gene expression pattern of extra-embryonic endoderm (XEN) cells, which are used as an intermediate stage in pluripotency induction. Therefore, iPSCs can be induced only from established XEN cells. We induced XEN cells using small molecules that modulate a signaling pathway and affect epigenetic modifications, and devised a culture method in which can be produced homogeneous XEN cells. At least 4 passages were required to establish morphologically homogeneous chemically induced XEN (CiXEN) cells, whose properties were similar to those of XEN cells, as revealed through cellular and molecular characterization. Chemically iPSCs derived from CiXEN cells showed characteristics similar to those of mouse embryonic stem cells. Our results show that the homogeneity of CiXEN cells is critical for the efficient induction of pluripotency by chemicals.

  • Research ArticleApril 30, 2023

    1 959 273

    Abstract : Down syndrome (DS) is the most common autosomal aneuploidy caused by trisomy of chromosome 21. Previous studies demonstrated that DS affected mitochondrial functions, which may be associated with the abnormal development of the nervous system in patients with DS. Runt-related transcription factor 1 (RUNX1) is an encoding gene located on chromosome 21. It has been reported that RUNX1 may affect cell apoptosis via the mitochondrial pathway. The present study investigated whether RUNX1 plays a critical role in mitochondrial dysfunction in DS and explored the mechanism by which RUNX1 affects mitochondrial functions. Expression of RUNX1 was detected in induced pluripotent stem cells of patients with DS (DS-iPSCs) and normal iPSCs (N-iPSCs), and the mitochondrial functions were investigated in the current study. Subsequently, RUNX1 was overexpressed in N-iPSCs and inhibited in DS-iPSCs. The mitochondrial functions were investigated thoroughly, including reactive oxygen species levels, mitochondrial membrane potential, ATP content and lysosomal activity. Finally, RNA-sequencing was used to explore the global expression pattern. It was observed that the expression levels of RUNX1 in DS-iPSCs were significantly higher than those in normal controls. Impaired mitochondrial functions were observed in DS-iPSCs. Of note, overexpression of RUNX1 in N-iPSCs resulted in mitochondrial dysfunction, while inhibition of RUNX1 expression could improve the mitochondrial function in DS-iPSCs. Global gene expression analysis indicated that overexpression of RUNX1 may promote the induction of apoptosis in DS-iPSCs by activating the PI3K/Akt signaling pathway. The present findings indicate that abnormal expression of RUNX1 may play a critical role in mitochondrial dysfunction in DS-iPSCs.

  • Research ArticleApril 30, 2023

    1 865 349

    RUNX1 Ameliorates Rheumatoid Arthritis Progression through Epigenetic Inhibition of LRRC15

    Hao Ding , Xiaoliang Mei , Lintao Li , Peng Fang , Ting Guo , and Jianning Zhao

    Mol. Cells 2023; 46(4): 231-244

    Abstract : Leucine-rich repeat containing 15 (LRRC15) has been identified as a contributing factor for cartilage damage in osteoarthritis; however, its involvement in rheumatoid arthritis (RA) and the underlying mechanisms have not been well characterized. The purpose of this study was to explore the function of LRRC15 in RA-associated fibroblast-like synoviocytes (RA-FLS) and in mice with collagen-induced arthritis (CIA) and to dissect the epigenetic mechanisms involved. LRRC15 was overexpressed in the synovial tissues of patients with RA, and LRRC15 overexpression was associated with increased proliferative, migratory, invasive, and angiogenic capacities of RA-FLS and accelerated release of pro-inflammatory cytokines. LRRC15 knockdown significantly inhibited synovial proliferation and reduced bone invasion and destruction in CIA mice. Runt-related transcription factor 1 (RUNX1) transcriptionally represses LRRC15 by binding to core-binding factor subunit beta (CBF-β). Overexpression of RUNX1 significantly inhibited the invasive phenotype of RA-FLS and suppressed the expression of proinflammatory cytokines. Conversely, the effects of RUNX1 were significantly reversed after overexpression of LRRC15 or inhibition of RUNX1-CBF-β interactions. Therefore, we demonstrated that RUNX1-mediated transcriptional repression of LRRC15 inhibited the development of RA, which may have therapeutic effects for RA patients.

  • Research ArticleApril 30, 2023

    0 515 234

    7α,25-Dihydroxycholesterol-Induced Oxiapoptophagic Chondrocyte Death via the Modulation of p53-Akt-mTOR Axis in Osteoarthritis Pathogenesis

    Jeong-Yeon Seo , Tae-Hyeon Kim , Kyeong-Rok Kang , HyangI Lim , Moon-Chang Choi , Do Kyung Kim , Hong Sung Chun , Heung-Joong Kim , Sun-Kyoung Yu , and Jae-Sung Kim

    Mol. Cells 2023; 46(4): 245-255

    Abstract : This study aimed to exploring the pathophysiological mechanism of 7α,25-dihydroxycholesterol (7α,25-DHC) in osteoarthritis (OA) pathogenesis. 7α,25-DHC accelerated the proteoglycan loss in ex vivo organ-cultured articular cartilage explant. It was mediated by the decreasing extracellular matrix major components, including aggrecan and type II collagen, and the increasing expression and activation of degenerative enzymes, including matrix metalloproteinase (MMP)-3 and -13, in chondrocytes cultured with 7α,25-DHC. Furthermore, 7α,25-DHC promoted caspase dependent chondrocytes death via extrinsic and intrinsic pathways of apoptosis. Moreover, 7α,25-DHC upregulated the expression of inflammatory factors, including inducible nitric oxide synthase, cyclooxygenase-2, nitric oxide, and prostaglandin E2, via the production of reactive oxygen species via increase of oxidative stress in chondrocytes. In addition, 7α,25-DHC upregulated the expression of autophagy biomarker, including beclin-1 and microtubule-associated protein 1A/1B-light chain 3 via the modulation of p53-Akt-mTOR axis in chondrocytes. The expression of CYP7B1, caspase-3, and beclin-1 was elevated in the degenerative articular cartilage of mouse knee joint with OA. Taken together, our findings suggest that 7α,25-DHC is a pathophysiological risk factor of OA pathogenesis that is mediated a chondrocytes death via oxiapoptophagy, which is a mixed mode of apoptosis, oxidative stress, and autophagy.

  • CorrigendumApril 30, 2023

    0 394 81
Mol. Cells
Sep 30, 2023 Vol.46 No.9, pp. 527~572
Chronic obstructive pulmonary disease (COPD) is marked by airspace enlargement (emphysema) and small airway fibrosis, leading to airflow obstruction and eventual respiratory failure. Shown is a microphotograph of hematoxylin and eosin (H&E)-stained histological sections of the enlarged alveoli as an indicator of emphysema. Piao et al. (pp. 558-572) demonstrate that recombinant human hyaluronan and proteoglycan link protein 1 (rhHAPLN1) significantly reduces the extended airspaces of the emphysematous alveoli by increasing the levels of TGF-β receptor I and SIRT1/6, as a previously unrecognized mechanism in human alveolar epithelial cells, and consequently mitigates COPD.


Molecules and Cells

eISSN 0219-1032
qr-code Download