Previous​ Next
  • MinireviewDecember 31, 2021

    14 2633 776

    Abstract : The human genome contains many retroviral elements called human endogenous retroviruses (HERVs), resulting from the integration of retroviruses throughout evolution. HERVs once were considered inactive junk because they are not replication-competent, primarily localized in the heterochromatin, and silenced by methylation. But HERVs are now clearly shown to actively regulate gene expression in various physiological and pathological conditions such as developmental processes, immune regulation, cancers, autoimmune diseases, and neurological disorders. Recent studies report that HERVs are activated in patients suffering from coronavirus disease 2019 (COVID-19), the current pandemic caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection. In this review, we describe internal and external factors that influence HERV activities. We also present evidence showing the gene regulatory activity of HERV LTRs (long terminal repeats) in model organisms such as mice, rats, zebrafish, and invertebrate models of worms and flies. Finally, we discuss several molecular and cellular pathways involving various transcription factors and receptors, through which HERVs affect downstream cellular and physiological events such as epigenetic modifications, calcium influx, protein phosphorylation, and cytokine release. Understanding how HERVs participate in various physiological and pathological processes will help develop a strategy to generate effective therapeutic approaches targeting HERVs.

  • Journal ClubDecember 31, 2021

    0 868 191

    No Time to Die, Born to Be Killers: Survival Is Accompanied by Exhaustion after an Endless Battle

    After intense combat, defending killer T cells surrender to chronic disease pathogens or cancer by capitulating into an exhausted, dysfunctional cell type, TEx. Is their surrender definitive?

    Sarah Diederich and Yeonseok Chung

    Mol. Cells 2021; 44(12): 879-882
  • Research ArticleDecember 31, 2021

    2 1404 309

    Abstract : Genome-wide chromosome conformation capture (3C)- based high-throughput sequencing (Hi-C) has enabled identification of genome-wide chromatin loops. Because the Hi-C map with restriction fragment resolution is intrinsically associated with sparsity and stochastic noise, Hi-C data are usually binned at particular intervals; however, the binning method has limited reliability, especially at high resolution. Here, we describe a new method called HiCORE, which provides simple pipelines and algorithms to overcome the limitations of single-layered binning and predict core chromatin regions with three-dimensional physical interactions. In this approach, multiple layers of binning with slightly shifted genome coverage are generated, and interacting bins at each layer are integrated to infer narrower regions of chromatin interactions. HiCORE predicts chromatin looping regions with higher resolution, both in human and Arabidopsis genomes, and contributes to the identification of the precise positions of potential genomic elements in an unbiased manner.

  • Research ArticleDecember 31, 2021

    1 1269 339

    Contributory Role of BLT2 in the Production of Proinflammatory Cytokines in Cecal Ligation and Puncture-Induced Sepsis

    Donghwan Park , MyungJa Ro , A-Jin Lee , Dong-Wook Kwak , Yunro Chung , and Jae-Hong Kim

    Mol. Cells 2021; 44(12): 893-899

    Abstract : BLT2 is a low-affinity receptor for leukotriene B4, a potent lipid mediator of inflammation generated from arachidonic acid via the 5-lipoxygenase pathway. The aim of this study was to investigate whether BLT2 plays any role in sepsis, a systemic inflammatory response syndrome caused by infection. A murine model of cecal ligation and puncture (CLP)-induced sepsis was used to evaluate the role of BLT2 in septic inflammation. In the present study, we observed that the levels of ligands for BLT2 (LTB4 [leukotriene B4] and 12(S)-HETE [12(S)-hydroxyeicosatetraenoic acid]) were significantly increased in the peritoneal lavage fluid and serum from mice with CLP-induced sepsis. We also observed that the levels of BLT2 as well as 5-LO and 12-LO, which are synthesizing enzymes for LTB4 and 12(S)-HETE, were significantly increased in lung and liver tissues in the CLP mouse model. Blockade of BLT2 markedly suppressed the production of sepsis-associated cytokines (IL-6 [interleukin-6], TNF-α [tumor necrosis factor alpha], and IL-1β [interleukin-1β] as well as IL-17 [interleukin-17]) and alleviated lung inflammation in the CLP group. Taken together, our results suggest that BLT2 cascade contributes to lung inflammation in CLP-induced sepsis by mediating the production of inflammatory cytokines. These findings suggest that BLT2 may be a potential therapeutic target for sepsis patients.

  • Research ArticleDecember 31, 2021

    9 1431 334

    Abstract : Sour is one of the fundamental taste modalities that enable taste perception in animals. Chemoreceptors embedded in taste organs are pivotal to discriminate between different chemicals to ensure survival. Animals generally prefer slightly acidic food and avoid highly acidic alternatives. We recently proposed that all acids are aversive at high concentrations, a response that is mediated by low pH as well as specific anions in Drosophila melanogaster. Particularly, some carboxylic acids such as glycolic acid, citric acid, and lactic acid are highly attractive to Drosophila compared with acetic acid. The present study determined that attractive carboxylic acids were mediated by broadly expressed Ir25a and Ir76b, as demonstrated by a candidate mutant library screen. The mutant deficits were completely recovered via wild-type cDNA expression in sweet-sensing gustatory receptor neurons. Furthermore, sweet gustatory receptors such as Gr5a, Gr61a, and Gr64a-f modulate attractive responses. These genetic defects were confirmed using binary food choice assays as well as electrophysiology in the labellum. Taken together, our findings demonstrate that at least two different kinds of receptors are required to discriminate attractive carboxylic acids from other acids.

  • Research ArticleDecember 31, 2021

    8 2122 448

    Abstract : The virus-induced genome editing (VIGE) system aims to induce targeted mutations in seeds without requiring any tissue culture. Here, we show that tobacco rattle virus (TRV) harboring guide RNA (gRNA) edits germ cells in a wild tobacco, Nicotiana attenuata, that expresses Streptococcus pyogenes Cas9 (SpCas9). We first generated N. attenuata transgenic plants expressing SpCas9 under the control of 35S promoter and infected rosette leaves with TRV carrying gRNA. Gene-edited seeds were not found in the progeny of the infected N. attenuata. Next, the N. attenuata ribosomal protein S5 A (RPS5A) promoter fused to SpCas9 was employed to induce the heritable gene editing with TRV. The RPS5A promoter-driven SpCas9 successfully produced monoallelic mutations at three target genes in N. attenuata seeds with TRV-delivered guide RNA. These monoallelic mutations were found in 2%-6% seeds among M1 progenies. This editing method provides an alternative way to increase the heritable editing efficacy of VIGE.

Mol. Cells
Sep 30, 2023 Vol.46 No.9, pp. 527~572
Chronic obstructive pulmonary disease (COPD) is marked by airspace enlargement (emphysema) and small airway fibrosis, leading to airflow obstruction and eventual respiratory failure. Shown is a microphotograph of hematoxylin and eosin (H&E)-stained histological sections of the enlarged alveoli as an indicator of emphysema. Piao et al. (pp. 558-572) demonstrate that recombinant human hyaluronan and proteoglycan link protein 1 (rhHAPLN1) significantly reduces the extended airspaces of the emphysematous alveoli by increasing the levels of TGF-β receptor I and SIRT1/6, as a previously unrecognized mechanism in human alveolar epithelial cells, and consequently mitigates COPD.


Molecules and Cells

eISSN 0219-1032
qr-code Download